- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Publikation
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
Bisher war die Funktion der Polyphenoloxidasen (PPO) unklar. Inzwischen konnte aber gezeigt werden, dass eine Tyrosinase an der Betacyan‐Biosynthese des Portulakröschens (siehe Bild) und der Roten Rübe sowie eine Chalkon‐spezifische PPO an der Auronbildung in gelben Löwenmaulblüten beteiligt ist.
Publikation
Enzymes in search of a function, for polyphenol oxidases (PPOs), described as such, this situation has changed recently. A tyrosinase is involved in betacyanin biosynthesis in common portulaca (see picture) and red beet, and a chalcone‐specific PPO is responsible for the formation of aurones in yellow snapdragon flowers.
Publikation
The betalains of yellow, orange and red inflorescences of common cockscomb (Celosia argentea var. cristata) were compared and proved to be qualitatively identical to those of feathered amaranth (Celosia argentea var. plumosa). In addition to the known compounds amaranthin and betalamic acid, the structures of three yellow pigments were elucidated to be immonium conjugates of betalamic acid with dopamine, 3-methoxytyramine and (S)-tryptophan by various spectroscopic techniques and comparison to synthesized reference compounds; the latter two are new to plants. Among the betacyanins occurring in yellow inflorescences in trace amounts, the presence of 2-descarboxy-betanidin, a dopamine-derived betacyanin, has been ascertained. The detection of high dopamine concentration may be of toxicological relevance in use of yellow inflorescences as a vegetable and in traditional Chinese medicine, common uses for the red inflorescences of common cockscomb.The betaxanthins of two Celosia argentea varieties were identified as betalamic acid conjugates of dopamine (1), 3-methoxytyramine (2) and (S)-tryptophan.
Publikation
In light of the fact that the main betaxanthin (miraxanthin V) and the major betacyanin (2-descarboxy-betanidin) in hairy root cultures of yellow beet (Beta vulgaris L.) are both dopamine-derived, the occurrence of similar structures for the minor betacyanins was also suggested. By HPLC comparison with the betacyanins obtained by dopamine administration to beet seedlings, enzymatic hydrolysis, LCMS and 1H NMR analyses, the minor betacyanins from hairy roots were identified as 2-descarboxy-betanin and its 6′-O-malonyl derivative. A short-term dopamine administration experiment with fodder beet seedlings revealed that the condensation step between 2-descarboxy-cyclo-Dopa and betalamic acid is the decisive reaction, followed by glucosylation and acylation. From these data a pathway for the biosynthesis of dopamine-derived betalains is proposed. Furthermore, the occurrence of these compounds in various cell and hairy root cultures as well as beet plants (Fodder and Garden Beet Group) is shown.
Publikation
The chemical stability and colorant properties of three betaxanthins recently identified from Celosia argentea varieties were evaluated. Lyophilized betaxanthin powders from yellow inflorescences of Celosia exhibited bright yellow color and high color purity with strong hygroscopicity. The aqueous solutions containing these betaxanthins were bright yellow in the pH range 2.2−7.0, and they were most stable at pH 5.5. The betaxanthins in a model system (buffer) were susceptible to heat, and found to be as unstable as red betacyanins (betanin and amaranthine) at high temperatures (>40 °C), but more stable at 40 °C with the exclusion of light and air. The three betaxanthins had slightly higher pigment retention than amaranthine/isoamaranthine in crude extracts at 22 °C, as verified by HPLC analysis. Lyophilized betaxanthins had much better storage stability (mean 95.0% pigment retention) than corresponding aqueous solutions (14.8%) at 22 °C after 20 weeks. Refrigeration (4 °C) significantly increased pigment retention of aqueous betaxanthins to 75.5%.