Suchfilter
- Journal / Buchreihe / Preprint-Server Nach Häufigkeit alphabetisch sortiert
-
Phytochemistry (132)Plant J. (95)Plant Physiol. (94)0 (84)Plant Cell (55)Planta (54)bioRxiv (51)New Phytol. (50)Methods Mol. Biol. (41)Front. Plant Sci. (40)Int. J. Mol. Sci. (33)J. Biol. Chem. (33)J. Exp. Bot. (33)PLOS ONE (30)FEBS Lett. (29)Molecules (28)Vietnam J. Chem. (26)J. Plant Physiol. (21)Angew. Chem. (18)Tetrahedron Lett. (18)Trends Plant Sci. (18)Plant Cell Physiol. (17)Sci. Rep. (17)Metabolomics (16)ChemBioChem (15)Plants (15)Anal. Bioanal. Chem. (14)BMC Plant Biol. (14)J. Agr. Food Chem. (14)J. Org. Chem. (14)Nat. Prod. Commun. (14)Plant Signal Behav. (14)Plant Cell Environ. (13)Plant Mol. Biol. (13)Adv. Exp. Med. Biol. (12)Anal. Chem. (12)Biochem. Syst. Ecol. (12)Chem. Commun. (12)Curr. Biol. (12)Food Chem. (12)J. Nat. Prod. (12)Metabolites (12)Org. Biomol. Chem. (12)Synthesis (12)Biol. Chem. (11)Eur. J. Org. Chem. (11)Nat. Commun. (11)Planta Med. (11)Tetrahedron (11)BMC Bioinformatics (10)J. Cheminform. (10)J. Mass Spectrom. (10)Nat. Prod. Res. (10)Mol. Plant (9)Synlett (9)ChemCatChem (8)Fitoterapia (8)J. Proteome Res. (8)Mycorrhiza (8)Phytochem. Anal. (8)Proteomics (8)Amino Acids (7)Chem.-Eur. J. (7)Org. Lett. (7)Pharmazie (7)Plant Sci. (7)ACS Catal. (6)BIOspektrum (6)Bio Protoc. (6)Biochimie (6)Biomolecules (6)Chem. Biodivers. (6)Dalton Trans. (6)EMBO J. (6)Eur. J. Biochem. (6)J. Med. Chem. (6)Nat. Chem. Biol. (6)Nat. Plants (6)PLOS Pathog. (6)Physiol. Plant. (6)Plant Biol. (6)RSC Adv. (6)Science (6)ACS Chem. Biol. (5)Anal. Biochem. (5)
-
- Autor Nach Häufigkeit alphabetisch sortiert
-
Neumann, S. (8)Böttcher, C. (3)Jones, A. R. (3)Haug, K. (2)Hoffmann, N. (2)Porzel, A. (2)Rocca-Serra, P. (2)Salek, R. M. (2)Vizcaíno, J. A. (2)Afsar, F. A. (1)Alka, O. (1)Balcke, G. U. (1)Bandeira, N. (1)Ben-Hur, A. (1)Binz, P.-A. (1)Bittremieux, W. (1)Brack, W. (1)Böcker, S. (1)Carver, J. (1)Claeys, T. (1)Clemens, S. (1)Cruz, J. A. (1)Dayalan, S. (1)Deborde, C. (1)Deutsch, E. W. (1)Dubakova, P. S. (1)Easton, J. (1)Ebbels, T. M. D. (1)Eisenacher, M. (1)Flitsch, S. L. (1)Frolov, A. (1)Gabriels, R. (1)Gladchuk, A. S. (1)Gorzolka, K. (1)Grant, J. R. (1)Grauslys, A. (1)Griffin, J. L. (1)Gzgzyan, A. M. (1)Günther, U. L. (1)Hao, J. (1)Hartler, J. (1)Hecht, H. (1)Jacob, D. (1)Kawano, S. (1)Keltsieva, O. A. (1)Klein, J. (1)Klein, M. S. (1)Kobayashi, N. (1)Krasnov, K. A. (1)Krauss, M. (1)Kuhl, C. (1)Lam, H. (1)Lapina, N. (1)Larralde, M. (1)Larson, T. R. (1)Lewis, I. A. (1)Luchinat, C. (1)Ludwig, C. (1)Lukasheva, E. (1)Maddula, R. K. (1)Mak, T. D. (1)Marcu, A. (1)Mayer, G. (1)Mendoza, L. (1)Meringer, M. (1)Moing, A. (1)Neely, B. A. (1)Olkhov, R. V. (1)Payne, T. (1)Pearce, J. T. M. (1)Prenni, J. E. (1)Qi, D. (1)Rasche, F. (1)Rein, J. (1)Rosato, A. (1)Sachsenberg, T. (1)Scheel, D. (1)Schober, D. (1)Schulte, D. (1)Schulze, T. (1)Selyutin, A. A. (1)Shaw, A. M. (1)Shofstahl, J. (1)Silyavka, E. S. (1)Stanstrup, J. (1)Steinbeck, C. (1)Sun, Z. (1)Suomi, T. (1)Svatoš, A. (1)Tautenhahn, R. (1)Tissier, A. (1)Treutler, H. (1)
-
- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
The structural elucidation of organic compounds in complex biofluids and tissues remains a significant analytical challenge. For mass spectrometry, the manual interpretation of collision-induced dissociation (CID) mass spectra is cumbersome and requires expert knowledge, as the fragmentation mechanisms of ions formed from small molecules are not completely understood. The automated identification of compounds is generally limited to searching in spectral libraries. Here, we present a method for interpreting the CID spectra of the organic compound’s protonated ions by computing fragmentation trees that establish not only the molecular formula of the compound and all fragment ions but also the dependencies between fragment ions. This is an important step toward the automated identification of unknowns from the CID spectra of compounds that are not in any database.
Publikation
The coupling of liquid chromatography to electrospray ionization quadrupole time-of-flight mass spectrometry can be a powerful tool for metabolomics, i.e., the comprehensive detection of low molecular weight compounds in biological systems. There have, however, been doubts about the feasibility and reliability of this approach, because LC−MSespecially with electrospray ionizationcan be subject to matrix effects. We evaluated matrix effects for our metabolomics platform in three ways: (i) postextraction addition of a set of reference compounds to different complex biological matrixes to determine absolute and relative matrix effects, (ii) postcolumn infusion of two reference compounds, and (iii) mixing of two complex matrixes. Our data demonstrate that there are indeed significant absolute matrix effects when comparing highly divergent samples. However, relative matrix effects are negligibleunless extremely divergent matrixes are comparedand do not compromise the relative quantification that is aimed for in nontargeted metabolomics studies. In conclusion, employing LC-coupled ESI-QTOF-MS for metabolomics studies is feasible yet rigorous validation is necessary.