- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
Apocarotinoide werden durch hochspezifische Spaltungsreaktionen oxidativer Enzyme an den Doppelbindungen von Carotinoiden maßgeschneidert. Es können neue Chromophore entstehen, die zusätzliche Nuancen des gelb‐roten Farbspektrums eröffnen. Farblose C13‐Apocarotinoide können potente Duft‐ und Aromastoffe sein. Viele Apocarotinoidfunktionen mit Hormoncharakter sind lange bekannt (Abszisinsäure in Pflanzen, Trisporsäure in Pilzen, Retinsäure in Säugern). Eine neue Klasse von Apocarotinoid‐Pflanzenhormonen, die die Sprossverzweigung der Pflanzen mitbestimmen, wurde kürzlich als Strigolactone identifiziert. In ihrer Biosynthese wie auch in der von mykorrhizainduzierten C13/C14‐Apocarotinoiden treten mehrstufige aufeinanderfolgende Carotinoidspaltungsreaktionen auf. Das Wissen über Synthesewege und Funktionen von Apocarotinoiden eröffnet neue Perspektiven für Anwendungen im Zierpflanzenbau, bei der Bekämpfung parasitischer Unkräuter und in der Beeinflussung von Blütendüften und Fruchtaromen.
Publikation
The induced defense response in plants towards herbivores is mainly regulated by jasmonates and leads to the accumulation of so-called jasmonate-induced proteins. Recently, a jasmonate (JA) inducible lectin called Nicotiana tabacum agglutinin or NICTABA was discovered in tobacco (N. tabacum cv Samsun) leaves. Tobacco plants also accumulate the lectin after insect attack by caterpillars. To study the functional role of NICTABA, the accumulation of the JA precursor 12-oxophytodienoic acid (OPDA), JA as well as different JA metabolites were analyzed in tobacco leaves after herbivory by larvae of the cotton leafworm (Spodoptera littoralis) and correlated with NICTABA accumulation. It was shown that OPDA, JA as well as its methyl ester can trigger NICTABA accumulation. However, hydroxylation of JA and its subsequent sulfation and glucosylation results in inactive compounds that have lost the capacity to induce NICTABA gene expression. The expression profile of NICTABA after caterpillar feeding was recorded in local as well as in systemic leaves, and compared to the expression of several genes encoding defense proteins, and genes encoding a tobacco systemin and the allene oxide cyclase, an enzyme in JA biosynthesis. Furthermore, the accumulation of NICTABA was quanti-fied after S. littoralis herbivory and immunofluorescence microscopy was used to study the localization of NICTABA in the tobacco leaf.
Publikation
Calcium (Ca2+), as a second messenger, is crucial for signal transduction processes during many biotic interactions. We demonstrate that cellular [Ca2+] elevations are early events in the interaction between the plant growth‐promoting fungus Piriformospora indica and Arabidopsis thaliana . A cell wall extract (CWE) from the fungus promotes the growth of wild‐type seedlings but not of seedlings from P. indica ‐insensitive mutants. The extract and the fungus also induce a similar set of genes in Arabidopsis roots, among them genes with Ca2+ signalling‐related functions. The CWE induces a transient cytosolic Ca2+ ([Ca2+]cyt) elevation in the roots of Arabidopsis and tobacco (Nicotiana tabacum ) plants, as well as in BY‐2 suspension cultures expressing the Ca2+ bioluminescent indicator aequorin. Nuclear Ca2+ transients were also observed in tobacco BY‐2 cells. The Ca2+ response was more pronounced in roots than in shoots and involved Ca2+ uptake from the extracellular space as revealed by inhibitor studies. Inhibition of the Ca2+ response by staurosporine and the refractory nature of the Ca2+ elevation suggest that a receptor may be involved. The CWE does not stimulate H2O2 production and the activation of defence gene expression, although it led to phosphorylation of mitogen‐activated protein kinases (MAPKs) in a Ca2+‐dependent manner. The involvement of MAPK6 in the mutualistic interaction was shown for an mpk6 line, which did not respond to P. indica . Thus, Ca2+ is likely to be an early signalling component in the mutualistic interaction between P. indica and Arabidopsis or tobacco.
Publikation
Inadequate availability of inorganic phosphate (Pi) in the rhizosphere is a common challenge to plants, which activate metabolic and developmental responses to maximize Pi acquisition. The sensory mechanisms that monitor environmental Pi status and regulate root growth via altered meristem activity are unknown. Here, we show that phosphate deficiency response 2 (PDR2) encodes the single P5-type ATPase of Arabidopsis thaliana. PDR2 functions in the endoplasmic reticulum (ER) and is required for proper expression of scarecrow (SCR), a key regulator of root patterning, and for stem-cell maintenance in Pi-deprived roots. We further show that the multicopper oxidase encoded by low phosphate root 1 (LPR1) is targeted to the ER and that LPR1 and PDR2 interact genetically. Because the expression domains of both genes overlap in the stem-cell niche and distal root meristem, we propose that PDR2 and LPR1 function together in an ER-resident pathway that adjusts root meristem activity to external Pi. Our data indicate that the Pi-conditional root phenotype of pdr2 is not caused by increased Fe availability in low Pi; however, Fe homeostasis modifies the developmental response of root meristems to Pi availability.
Publikation
De-oiled rapeseed is a rich source of proteins and phenolic compounds. The phenolic compounds, namely sinapic acid derivatives (SAD), could occur as free sinapic acid, esterified (as sinapine, the choline ester of sinapic acid) and decarboxylated (as canolol) forms. Rapeseed protein preparations containing very low phenolic compounds have been the focus of our ongoing research. A precipitated rapeseed protein isolate is investigated for SAD such as sinapine, sinapoyl glucose, canolol using HPLC–DAD and LC–MS. Profile of the phenolic compounds of de-oiled rapeseed, press cakes and the precipitated protein isolate are compared. HPLC–DAD analysis indicated SAD; particularly sinapine is the main phenolic compound of all the substrates. The protein derivation process did not remarkably alter the profile of the investigated protein isolate.
Publikation
The synthesis of phytochelatins (PCs) is essential for the detoxification of nonessential metals and metalloids such as cadmium and arsenic in plants and a variety of other organisms. To our knowledge, no direct evidence for a role of PCs in essential metal homeostasis has been reported to date. Prompted by observations in Schizosaccharomyces pombe and Saccharomyces cerevisiae indicating a contribution of PC synthase expression to Zn2+ sequestration, we investigated a known PC-deficient Arabidopsis (Arabidopsis thaliana) mutant, cad1-3, and a newly isolated second strong allele, cad1-6, with respect to zinc (Zn) homeostasis. We found that in a medium with low cation content PC-deficient mutants show pronounced Zn2+ hypersensitivity. This phenotype is of comparable strength to the well-documented Cd2+ hypersensitivity of cad1 mutants. PC deficiency also results in significant reduction in root Zn accumulation. To be able to sensitively measure PC accumulation, we established an assay using capillary liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry of derivatized extracts. Plants grown under control conditions consistently showed PC2 accumulation. Analysis of plants treated with same-effect concentrations revealed that Zn2+-elicited PC2 accumulation in roots reached about 30% of the level of Cd2+-elicited PC2 accumulation. We conclude from these data that PC formation is essential for Zn2+ tolerance and provides driving force for the accumulation of Zn. This function might also help explain the mysterious occurrence of PC synthase genes throughout the plant kingdom and in a wide range of other organisms.
Publikation
Acylation is a prevalent chemical modification that to a significant extent accounts for the tremendous diversity of plant metabolites. To catalyze acyl transfer reactions, higher plants have evolved acyltransferases that accept β-acetal esters, typically 1-O-glucose esters, as an alternative to the ubiquitously occurring CoA-thioester-dependent enzymes. Shared homology indicates that the β-acetal ester-dependent acyltransferases are derived from a common hydrolytic ancestor of the Serine CarboxyPeptidase (SCP) type, giving rise to the name Serine CarboxyPeptidase-Like (SCPL) acyltransferases. We have analyzed structure–function relationships, reaction mechanism and sequence evolution of Arabidopsis 1-O-sinapoyl-β-glucose:l-malate sinapoyltransferase (AtSMT) and related enzymes to investigate molecular changes required to impart acyltransferase activity to hydrolytic enzymes. AtSMT has maintained the catalytic triad of the hydrolytic ancestor as well as part of the H-bond network for substrate recognition to bind the acyl acceptor l-malate. A Glu/Asp substitution at the amino acid position preceding the catalytic Ser supports binding of the acyl donor 1-O-sinapoyl-β-glucose and was found highly conserved among SCPL acyltransferases. The AtSMT-catalyzed acyl transfer reaction follows a random sequential bi-bi mechanism that requires both substrates 1-O-sinapoyl-β-glucose and l-malate bound in an enzyme donor–acceptor complex to initiate acyl transfer. Together with the strong fixation of the acyl acceptor l-malate, the acquisition of this reaction mechanism favours transacylation over hydrolysis in AtSMT catalysis. The model structure and enzymatic side activities reveal that the AtSMT-mediated acyl transfer proceeds via a short-lived acyl enzyme complex. With regard to evolution, the SCPL acyltransferase clade most likely represents a recent development. The encoding genes are organized in a tandem-arranged cluster with partly overlapping functions. With other enzymes encoded by the respective gene cluster on Arabidopsis chromosome 2, AtSMT shares the enzymatic side activity to disproportionate 1-O-sinapoyl-β-glucoses to produce 1,2-di-O-sinapoyl-β-glucose. In the absence of the acyl acceptor l-malate, a residual esterase activity became obvious as a remnant of the hydrolytic ancestor. With regard to the evolution of Arabidopsis SCPL acyltransferases, our results suggest early neofunctionalization of the hydrolytic ancestor toward acyltransferase activity and acyl donor specificity for 1-O-sinapoyl-β-glucose followed by subfunctionalization to recognize different acyl acceptors.
Publikation
Multicomponent Passerini and Ugi reactions enable the fast and efficient synthesis of redox-active multifunctional selenium and tellurium compounds, of which some show considerable cytotoxicity against specific cancer cells.
Publikation
The recently described Citrus viroid V (CVd‐V) induces, in Etrog citron, mild stunting and very small necrotic lesions and cracks, sometimes filled with gum. As Etrog citron plants co‐infected with Citrus dwarfing viroid (CDVd) and CVd‐V show synergistic interactions, these host–viroid combinations provide a convenient model to identify the pathogenicity determinant(s). The biological effects of replacing limited portions of the rod‐like structure of CVd‐V with the corresponding portions of CDVd are reported. Chimeric constructs were synthesized using a novel polymerase chain reaction‐based approach, much more flexible than those based on restriction enzymes used in previous studies. Of the seven chimeras (Ch) tested, only one (Ch5) proved to be infectious. Plants infected with Ch5 showed no symptoms and, although this novel chimera was able to replicate to relatively high titres in singly infected plants, it was rapidly displaced by either CVd‐V or CDVd in doubly infected plants. The results demonstrate that direct interaction(s) between structural elements in the viroid RNA (in this case, the terminal left domain) and as yet unidentified host factors play an important role in modulating viroid pathogenicity. This is the first pathogenic determinant mapped in species of the genus Apscaviroid.
Publikation
Die Lebensgemeinschaft mit Mykorrhizapilzen stellt Pflanzen mineralische Nährstoffe und Wasser zur Verfügung und gilt daher als evolutionäre Grundlage für die Entwicklung der Landpflanzen. Die heute weit verbreitete arbuskuläre Mykorrhiza (AM) ist insbesondere unter widrigen Bedingungen (Nährstoffmangel, Trocken‐, Salz‐ oder Schwermetallstress sowie Pathogenbefall) für die Pflanze von Nutzen. Der pilzliche AM‐Partner, der obligat auf die Interaktion angewiesen ist, wird im Gegenzug mit Kohlenhydraten versorgt. Der Artikel beschreibt den aktuellen Stand der Forschung bezüglich der Etablierung und Regulation der AM durch die Pflanze. Es werden die frühen Erkennungssignale und die nachfolgende Wegbereitung der Pflanze für den eindringenden Pilz, die Kohlenhydratversorgung des AM‐Pilzes, wie auch die Limitierung der pilzlichen Infektionen mittels Autoregulation und die Rolle der Phytohormone für eine funktionelle und ausgeglichene Symbiose behandelt.