- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
Three novel complexes of deprotonated diflunisal (dif) with neocuproine (neo) were synthesized and characterized via elemental, spectral (UV-vis, FTIR, fluorescence, and mass spectrometry), and single-crystal X-ray diffraction analyses. Although the compounds shared a similar composition of [MCl(dif)(neo)], where M represents Zn(II) (1), Co(II) (2) and Cu(II) (3), only 1 and 2 were isostructural, while 3 differed in both the molecular and supramolecular structures. In all three complex molecules, the central atom is coordinated by two nitrogen atoms of neo in a bidentate chelate mode, and one chlorido ligand and dif is bonded in either a monodentate mode via one oxygen atom of the carboxylate in 1 and 2 or in a bidentate chelate mode via both carboxylate oxygen atoms in 3. All three compounds demonstrated remarkable antiproliferative activity against human prostate (PC-3), colon (HCT116) and breast (MDA-MB-468) cancer cell lines with IC50 values in the nanomolar range, with the lowest values observed in the case of PC-3 and MDA-MB-468 with 2 (20.0 nM) and 3 (31.1 nM), respectively. Moreover, complex 2, as the most active, was further investigated for its potential to induce perturbations in the cell cycle of PC-3 cells. The results indicated an induction of caspase-independent apoptosis. The interaction of the complexes with genomic DNA isolated from the respective cancer cell lines was evaluated for the intercalative mode, with binding strength correlated with the antiproliferative activity against PC-3 and MDA-MB-468 cancer cell lines.
Publikation
For the development of anticancer drugs with higher activity and reduced toxicity, two approaches were combined: preparation of platinum(IV) complexes exhibiting higher stability compared to their platinum(II) counterparts and loading them into mesoporous silica SBA-15 with the aim to utilise the passive enhanced permeability and retention (EPR) effect of nanoparticles for accumulation in tumour tissues. Three conjugates based on a cisplatin scaffold bearing the anti-inflammatory drugs naproxen, ibuprofen or flurbiprofen in the axial positions (1, 2 and 3, respectively) were synthesised and loaded into SBA-15 to afford the mesoporous silica nanoparticles (MSNs) SBA-15|1, SBA-15|2 and SBA-15|3. Superior antiproliferative activity of both free and immobilised conjugates in a panel of four breast cancer cell lines (MDA-MB-468, HCC1937, MCF-7 and BT-474) with markedly increased cytotoxicity with respect to cisplatin was demonstrated. All compounds exhibit highest activity against the triple-negative cell line MDA-MB-468, with conjugate 1 being the most potent. However, against MCF-7 and BT-474 cell lines, the most notable improvement was found, with IC50 values up to 240-fold lower than cisplatin. Flow cytometry assays clearly show that all compounds induce apoptotic cell death elevating the levels of both early and late apoptotic cells. Furthermore, autophagy as well as formation of reactive oxygen species (ROS) and nitric oxide (NO) were elevated to a similar or greater extent than with cisplatin.
Publikation
The rapid annotation and identification by mass spectrometry techniques of flavonoids remains a challenge, due to their structural diversity and the limited availability of reference standards. This study applies a workflow to characterize two isoflavonoids, the orobol-C-glycosides analogs, using high-energy collisional dissociation (HCD)- and collision-induced dissociation (CID)-type fragmentation patterns, and also to evaluate the antioxidant effects of these compounds by ferric reducing antioxidant power (FRAP), 2,2′-azino-bis(3-ethylbenzothiazolin acid) 6-sulfonic acid (ABTS), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods. By the CID-type fragmentation, in positive mode and at all high-resolution mass spectrometry (HRMS) multiple stage, there were shown differences in the annotation of the compounds, mainly concerning some ratios of relative abundance. At CID-MS2 20 eV, the compounds could be efficiently characterized, because they present distinct base peaks [M + H]+ and [M + H–H2O]+ for the orobol-8-C- and orobol-6-C-glycoside, respectively. Similarly, by the HCD-type fragmentation, in HRMS2 stage, differences between orobol analogs in both mode of ionization were observed. However, the HR HCD-MS2 at 80 eV, in positive mode, generated more ions and each isomer presented different base peaks ions, [0,2X]+ for the orobol-8-C-glycoside and [0,3X]+ for the orobol-6-C-glycoside. By the DPPH, the 8-C-derivative showed a very close value compared with the standard rutin and, in the ABTS method, a higher radical-scavenging activity. In both methods, the EC50 of orobol-8-C-glycoside was almost twice better compared with orobol-6-C-glycoside. In FRAP, both C-glycosides showed a good capacity as Fe+3 reducing agents. We could realize that combined MS techniques, highlighting the positive mode of ionization, can be used to evaluate the isoflavones analogs being useful to differentiate between the isomeric flavones; therefore, these data are important to mass spectrometry dereplication studies become more efficient.
Publikation
Long‐chain ferulic acid esters, such as eicosyl ferulate (1), show a complex and analytically valuable fragmentation behavior under negative‐ion electrospay collision‐induced dissociation ((‐)‐ESI‐CID) mass spectrometry, as studied by use of a high‐resolution (Orbitrap) mass spectrometer. In a strong contrast to the very simple fragmentation of the [M + H]+ ion, which is discussed briefly, the deprotonated molecule, [M ‐ H]‐, exhibits a rich secondary fragmentation chemistry. It first loses a methyl radical (MS2) and the ortho‐quinoid [M ‐ H ‐ Me]‐• radical anion thus formed then dissociates by loss of an extended series of neutral radicals, CnH2n+1• (n = 0‐16) from the long alkyl chain, in competition with the expulsion of CO and CO2 (MS3). The further fragmentation (MS4) of the [M ‐ H ‐ Me ‐ C3H7]‐ ion, discussed as an example, and the highly specific losses of alkyl radicals from the [M ‐ H ‐ Me ‐ CO]‐• and [M ‐ H ‐ Me ‐ CO2]‐• ions provide some mechanistic and structural insights.
Publikation
Identification and structural determination of small molecules by mass spectrometry is an important step in chemistry and biochemistry. However, the chemically realistic annotation of a fragment ion spectrum can be a difficult challenge. We developed ChemFrag, for the detection of fragmentation pathways and the annotation of fragment ions with chemically reasonable structures. ChemFrag combines a quantum chemical with a rule‐based approach. For different doping substances as test instances, ChemFrag correctly annotates fragment ions. In most cases, the predicted fragments are chemically more realistic than those from purely combinatorial approaches, or approaches based on machine learning. The annotation generated by ChemFrag often coincides with spectra that have been manually annotated by experts. This is a major advance in peak annotation and allows a more precise automatic interpretation of mass spectra.
Publikation
Representative compounds with a 1,3‐dihydroxybenzene substructure belonging to different important polyphenol classes (stilbenes, flavones, isoflavones, flavonols, flavanones, flavanols, phloroglucinols, anthraquinones and bisanthraquinones) were investigated based on detailed high‐resolution tandem mass spectrometry measurements with an Orbitrap system under negative ion electrospray conditions. The mass spectral behaviour of these compound classes was compared among each other not only with respect to previously described losses of CO, CH2CO and C3O2 but also concerning the loss of CO2 and successive specific fragmentations. Furthermore, some unusual fragmentations such as the loss of a methyl radical during mass spectral decomposition are discussed. The obtained results demonstrate both similarities and differences in their mass spectral fragmentation under MSn conditions, allowing a characterization of the corresponding compound type.
Publikation
SBA-15|Sn3, a mesoporous silica-based material (derivative of SBA-15) loaded with an organotin compound Ph3Sn(CH2)3OH (Sn3), possesses improved antitumor potential against the A2780 high-grade serous ovarian carcinoma cell line in comparison to Sn3. It is demonstrated that both the compound and the nanostructured material are internalized by the A2780 cells. A similar mode of action of Sn3 and SBA-15|Sn3 against the A2780 cell line was found. Explicitly, induction of apoptosis, caspase 2, 3, 8 and 9 activation, accumulation of cells in the hypodiploid phase as well as accumulation of ROS were observed. Interestingly, Sn3 loaded in the mesoporous silica-based material needed to reach a concentration 3.5 times lower than the IC50 value of the Sn3 compound, pointing out a higher effect of the SBA-15|Sn3 than Sn3 alone. Clonogenic potential, growth in 3D culture as well as mobility of cells were disturbed in the presence of SBA-15|Sn3. Such behavior could be associated with the suppression of p-38 MAPK. Less profound effect of Sn3 compared to SBA-15|Sn3 could be attributed to a different regulation of p-38 and STAT-3, which are mainly responsible for an appropriate cellular response to diverse stimuli or metastatic properties.
Publikation
Correction for ‘Synthesis, cytotoxic and hydrolytic studies of titanium complexes anchored by a tripodal diamine bis(phenolate) ligand’ by Sónia Barroso et al., Dalton Trans., 2014, 43, 17422–17433.
Publikation
The reactivity, cytotoxic studies and hydrolytic behaviour of diamine bis(phenolate) titanium complexes are reported. The reactions of [Ti(tBu2O2NN′)Cl]2(μ-O) (1) with LiOiPr or HOiPr in the presence of NEt3, aiming at the synthesis of the alkoxido derivative of 1 led to no reaction or to the synthesis of the monomeric complex [Ti(tBu2O2NN′)(OiPr)2] (3), respectively. A small amount of the alkoxidotitanium dimer [Ti(tBu2O2NN′)(OiPr)]2(μ-O) (2) crystallized out of a solution of 3 and DFT calculations showed that the transformation of 1 into 3 is a thermodynamically favorable process in the presence of a base (NEt3) (ΔG = −14.7 kcal mol−1). 2 was quantitatively obtained through the direct reaction of the ligand precursor H2(tBu2O2NN′) with titanium tetra(isopropoxido). Further reaction of 2 with an excess of TMSCl was revealed to be the most suitable method for the preparation of [Ti(tBu2O2NN′)Cl2] (4). 1 and 3 disclosed cytotoxic activity towards HeLa, Fem-x, MDA-MB-361 and K562 cells and 1 exhibited moderate binding affinity to FS-DNA. 1H NMR hydrolysis studies attested the fast decomposition of 4 in the presence of D2O. The hydrolysis of 3 is slower and proceeds through the formation of [Ti(tBu2O2NN′)(OH)]2(μ-O) (5) that was crystallographically characterized. Upon D2O addition 1 immediately forms complex new species, stable in solution for long periods (weeks).
Publikation
Mass spectrometry (MS) is an important analytical technique for the detection and identification of small compounds. The main bottleneck in the interpretation of metabolite profiling or screening experiments is the identification of unknown compounds from tandem mass spectra.Spectral libraries for tandem MS, such as MassBank or NIST, contain reference spectra for many compounds, but their limited chemical coverage reduces the chance for a correct and reliable identification of unknown spectra outside the database domain.On the other hand, compound databases like PubChem or ChemSpider have a much larger coverage of the chemical space, but they cannot be queried with spectral information directly. Recently, computational mass spectrometry methods and in silico fragmentation prediction allow users to search such databases of chemical structures.We present a new strategy called MetFusion to combine identification results from several resources, in particular, from the in silico fragmenter MetFrag with the spectral library MassBank to improve compound identification. We evaluate the performance on a set of 1062 spectra and achieve an improved ranking of the correct compound from rank 28 using MetFrag alone, to rank 7 with MetFusion, even if the correct compound and similar compounds are absent from the spectral library. On the basis of the evaluation, we extrapolate the performance of MetFusion to the KEGG compound database.