- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Bücher und Buchkapitel
Bücher und Buchkapitel
Bücher und Buchkapitel
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Bücher und Buchkapitel
Mass spectrometry is the work-horse technology of the emerging field of metabolomics. The identification of mass signals remains the largest bottleneck for a non-targeted approach: due to the analytical method, each metabolite in a complex mixture will give rise to a number of mass signals. In contrast to GC/MS measurements, for soft ionisation methods such as ESI-MS there are no extensive libraries of reference spectra or established deconvolution methods. We present a set of annotation methods which aim to group together mass signals measured from a single metabolite, based on rules for mass differences and peak shape comparison.Availability: The software and documentation is available as an R package on http://msbi.ipb-halle.de/
Bücher und Buchkapitel
Searching and mining nuclear magnetic resonance (NMR)-spectra of naturally occurring substances is an important task to investigate new potentially useful chemical compounds. Multi-dimensional NMR-spectra are relational objects like documents, but consists of continuous multi-dimensional points called peaks instead of words. We develop several mappings from continuous NMR-spectra to discrete text-like data. With the help of those mappings any text retrieval method can be applied. We evaluate the performance of two retrieval methods, namely the standard vector space model and probabilistic latent semantic indexing (PLSI). PLSI learns hidden topics in the data, which is in case of 2D-NMR data interesting in its owns rights. Additionally, we develop and evaluate a simple direct similarity function, which can detect duplicates of NMR-spectra. Our experiments show that the vector space model as well as PLSI, which are both designed for text data created by humans, can effectively handle the mapped NMR-data originating from natural products. Additionally, PLSI is able to find meaningful ”topics” in the NMR-data.
Bücher und Buchkapitel
2D-Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical method to elucidate the chemical structure of molecules. In contrast to 1D-NMR spectra, 2D-NMR spectra correlate the chemical shifts of 1H and 13C simultaneously. To curate or merge large spectra libraries a robust (and fast) duplicate detection is needed. We propose a definition of duplicates with the desired robustness properties mandatory for 2D-NMR experiments. A major gain in runtime performance wrt. previously proposed heuristics is achieved by mapping the spectra to simple discrete objects. We propose several appropriate data transformations for this task. In order to compensate for slight variations of the mapped spectra, we use appropriate hashing functions according to the locality sensitive hashing scheme, and identify duplicates by hash-collisions.