- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Bücher und Buchkapitel
Publikation
Publikation
Publikation
Publikation
Publikation
Bücher und Buchkapitel
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
The rapid annotation and identification by mass spectrometry techniques of flavonoids remains a challenge, due to their structural diversity and the limited availability of reference standards. This study applies a workflow to characterize two isoflavonoids, the orobol-C-glycosides analogs, using high-energy collisional dissociation (HCD)- and collision-induced dissociation (CID)-type fragmentation patterns, and also to evaluate the antioxidant effects of these compounds by ferric reducing antioxidant power (FRAP), 2,2′-azino-bis(3-ethylbenzothiazolin acid) 6-sulfonic acid (ABTS), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods. By the CID-type fragmentation, in positive mode and at all high-resolution mass spectrometry (HRMS) multiple stage, there were shown differences in the annotation of the compounds, mainly concerning some ratios of relative abundance. At CID-MS2 20 eV, the compounds could be efficiently characterized, because they present distinct base peaks [M + H]+ and [M + H–H2O]+ for the orobol-8-C- and orobol-6-C-glycoside, respectively. Similarly, by the HCD-type fragmentation, in HRMS2 stage, differences between orobol analogs in both mode of ionization were observed. However, the HR HCD-MS2 at 80 eV, in positive mode, generated more ions and each isomer presented different base peaks ions, [0,2X]+ for the orobol-8-C-glycoside and [0,3X]+ for the orobol-6-C-glycoside. By the DPPH, the 8-C-derivative showed a very close value compared with the standard rutin and, in the ABTS method, a higher radical-scavenging activity. In both methods, the EC50 of orobol-8-C-glycoside was almost twice better compared with orobol-6-C-glycoside. In FRAP, both C-glycosides showed a good capacity as Fe+3 reducing agents. We could realize that combined MS techniques, highlighting the positive mode of ionization, can be used to evaluate the isoflavones analogs being useful to differentiate between the isomeric flavones; therefore, these data are important to mass spectrometry dereplication studies become more efficient.
Bücher und Buchkapitel
In the last decade thiotaurine, 2-aminoethane thiosulfonate, has been investigated as an inflammatory modulating agent as a result of its ability to release hydrogen sulfide (H2S) known to play regulatory roles in inflammation. Thiotaurine can be included in the “taurine family” due to structural similarity to taurine and hypotaurine, and is characterized by the presence of a sulfane sulfur moiety. Thiotaurine can be produced by different pathways, such as the spontaneous transsulfuration between thiocysteine – a persulfide analogue of cysteine – and hypotaurine as well as in vivo from cystine. Moreover, the enzymatic oxidation of cysteamine to hypotaurine and thiotaurine in the presence of inorganic sulfur can occur in animal tissues and last but not least thiotaurine can be generated by the transfer of sulfur from mercaptopyruvate to hypotaurine catalyzed by a sulfurtransferase. Thiotaurine is an effective antioxidant agent as demonstrated by its ability to counteract the damage caused by pro-oxidants in the rat. Recently, we observed the influence of thiotaurine on human neutrophils functional responses. In particular, thiotaurine has been found to prevent human neutrophil spontaneous apoptosis suggesting an alternative or additional role to its antioxidant activity. It is likely that the sulfane sulfur of thiotaurine may modulate neutrophil activation via persulfidation of target proteins. In conclusion, thiotaurine can represent a biologically relevant sulfur donor acting as a biological intermediate in the transport, storage and release of sulfide.
Publikation
Long‐chain ferulic acid esters, such as eicosyl ferulate (1), show a complex and analytically valuable fragmentation behavior under negative‐ion electrospay collision‐induced dissociation ((‐)‐ESI‐CID) mass spectrometry, as studied by use of a high‐resolution (Orbitrap) mass spectrometer. In a strong contrast to the very simple fragmentation of the [M + H]+ ion, which is discussed briefly, the deprotonated molecule, [M ‐ H]‐, exhibits a rich secondary fragmentation chemistry. It first loses a methyl radical (MS2) and the ortho‐quinoid [M ‐ H ‐ Me]‐• radical anion thus formed then dissociates by loss of an extended series of neutral radicals, CnH2n+1• (n = 0‐16) from the long alkyl chain, in competition with the expulsion of CO and CO2 (MS3). The further fragmentation (MS4) of the [M ‐ H ‐ Me ‐ C3H7]‐ ion, discussed as an example, and the highly specific losses of alkyl radicals from the [M ‐ H ‐ Me ‐ CO]‐• and [M ‐ H ‐ Me ‐ CO2]‐• ions provide some mechanistic and structural insights.
Publikation
Identification and structural determination of small molecules by mass spectrometry is an important step in chemistry and biochemistry. However, the chemically realistic annotation of a fragment ion spectrum can be a difficult challenge. We developed ChemFrag, for the detection of fragmentation pathways and the annotation of fragment ions with chemically reasonable structures. ChemFrag combines a quantum chemical with a rule‐based approach. For different doping substances as test instances, ChemFrag correctly annotates fragment ions. In most cases, the predicted fragments are chemically more realistic than those from purely combinatorial approaches, or approaches based on machine learning. The annotation generated by ChemFrag often coincides with spectra that have been manually annotated by experts. This is a major advance in peak annotation and allows a more precise automatic interpretation of mass spectra.
Publikation
Representative compounds with a 1,3‐dihydroxybenzene substructure belonging to different important polyphenol classes (stilbenes, flavones, isoflavones, flavonols, flavanones, flavanols, phloroglucinols, anthraquinones and bisanthraquinones) were investigated based on detailed high‐resolution tandem mass spectrometry measurements with an Orbitrap system under negative ion electrospray conditions. The mass spectral behaviour of these compound classes was compared among each other not only with respect to previously described losses of CO, CH2CO and C3O2 but also concerning the loss of CO2 and successive specific fragmentations. Furthermore, some unusual fragmentations such as the loss of a methyl radical during mass spectral decomposition are discussed. The obtained results demonstrate both similarities and differences in their mass spectral fragmentation under MSn conditions, allowing a characterization of the corresponding compound type.
Publikation
Mass spectrometry (MS) is an important analytical technique for the detection and identification of small compounds. The main bottleneck in the interpretation of metabolite profiling or screening experiments is the identification of unknown compounds from tandem mass spectra.Spectral libraries for tandem MS, such as MassBank or NIST, contain reference spectra for many compounds, but their limited chemical coverage reduces the chance for a correct and reliable identification of unknown spectra outside the database domain.On the other hand, compound databases like PubChem or ChemSpider have a much larger coverage of the chemical space, but they cannot be queried with spectral information directly. Recently, computational mass spectrometry methods and in silico fragmentation prediction allow users to search such databases of chemical structures.We present a new strategy called MetFusion to combine identification results from several resources, in particular, from the in silico fragmenter MetFrag with the spectral library MassBank to improve compound identification. We evaluate the performance on a set of 1062 spectra and achieve an improved ranking of the correct compound from rank 28 using MetFrag alone, to rank 7 with MetFusion, even if the correct compound and similar compounds are absent from the spectral library. On the basis of the evaluation, we extrapolate the performance of MetFusion to the KEGG compound database.
Publikation
A series of prevailing prenylated furanocoumarins from leaves of Dorstenia gigas and Dorstenia foetida (Moraceae) were investigated by liquid chromatography/electrospray tandem mass spectrometry. The mass spectral behavior of the furanocoumarins under positive ion electrospray conditions is discussed using both an ion trap and a triple quadrupole system. It is demonstrated that both methods represent valuable tools not only for the rapid classification of this type of compounds, but also with respect to their substitution pattern.
Bücher und Buchkapitel
Multi-component reactions of building blocks with more than one MCR-reactive group will give rise to oligomeric MCR products. The proper choice of at least two bifunctional building blocks will give either a polymeric or a cyclic product. Apart from polymerization, repetitive or consecutive Ugi reactions have been used to produce linear MCR-heterooligomers with such building blocks.
Publikation
MassBank is the first public repository of mass spectra of small chemical compounds for life sciences (<3000 Da). The database contains 605 electron‐ionization mass spectrometry(EI‐MS), 137 fast atom bombardment MS and 9276 electrospray ionization (ESI)‐MSn data of 2337 authentic compounds of metabolites, 11 545 EI‐MS and 834 other‐MS data of 10 286 volatile natural and synthetic compounds, and 3045 ESI‐MS2 data of 679 synthetic drugs contributed by 16 research groups (January 2010). ESI‐MS2 data were analyzed under nonstandardized, independent experimental conditions. MassBank is a distributed database. Each research group provides data from its own MassBank data servers distributed on the Internet. MassBank users can access either all of the MassBank data or a subset of the data by specifying one or more experimental conditions. In a spectral search to retrieve mass spectra similar to a query mass spectrum, the similarity score is calculated by a weighted cosine correlation in which weighting exponents on peak intensity and the mass‐to‐charge ratio are optimized to the ESI‐MS2 data. MassBank also provides a merged spectrum for each compound prepared by merging the analyzed ESI‐MS2 data on an identical compound under different collision‐induced dissociation conditions. Data merging has significantly improved the precision of the identification of a chemical compound by 21–23% at a similarity score of 0.6. Thus, MassBank is useful for the identification of chemical compounds and the publication of experimental data.
Publikation
Mono‐ and poly‐adenosine diphosphate (ADP)‐ribosylation are common post‐translational modifications incorporated by sequence‐specific enzymes at, predominantly, arginine, asparagine, glutamic acid or aspartic acid residues, whereas non‐enzymatic ADP‐ribosylation (glycation) modifies lysine and cysteine residues. These glycated proteins and peptides (Amadori‐compounds) are commonly found in organisms, but have so far not been investigated to any great degree. In this study, we have analyzed their fragmentation characteristics using different mass spectrometry (MS) techniques. In matrix‐assisted laser desorption/ionization (MALDI)‐MS, the ADP‐ribosyl group was cleaved, almost completely, at the pyrophosphate bond by in‐source decay. In contrast, this cleavage was very weak in electrospray ionization (ESI)‐MS. The same fragmentation site also dominated the MALDI‐PSD (post‐source decay) and ESI‐CID (collision‐induced dissociation) mass spectra. The remaining phospho‐ribosyl group (formed by the loss of adenosine monophosphate) was stable, providing a direct and reliable identification of the modification site via the b‐ and y‐ion series. Cleavage of the ADP‐ribose pyrophosphate bond under CID conditions gives access to both neutral loss (347.10 u) and precursor‐ion scans (m/z 348.08), and thereby permits the identification of ADP‐ribosylated peptides in complex mixtures with high sensitivity and specificity. With electron transfer dissociation (ETD), the ADP‐ribosyl group was stable, providing ADP‐ribosylated c‐ and z‐ions, and thus allowing reliable sequence analyses.