- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Publikation
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
The occurrence of a nuclear cataract in the eye lens due to disruption of the α3C×46 connexin gene, Gja3 , is dependent on strain background in a mouse model, implicating factors that modify the pathology. The differences upon cataractogenesis in the urea soluble proteins of the lens of two mouse strains, C57BL/6J and 129/SvJ, were analyzed by a comparative proteomics approach. Determination of the complete proteome of an organ offers the opportunity to characterize at a molecular level, differences in gene expression and PTMs occurring during pathology and between individuals. The abundance of 63 protein species was altered between the strains. A unique aspect of this study is the identification of chaperonin subunit 6A, mortalin, ERp29, and syntaxin‐binding protein 6 in the eye lens. DNA polymorphisms resulting in nonconservative amino acid changes that led to altered physicochemical properties of the proteins were detected for mortalin, chaperonin subunit 6A, annexin A1, and possibly γ‐N crystallin. The results show HSP27/25 and/or ERp29 are the likely major modifying factors for cataractogenesis. Extension of the results suggests that small heat‐shock proteins have a major role for influencing cataract formation in humans.
Publikation
The dynamics of a proteome can only be addressed with large‐scale, high‐throughput methods. To cope with the inherent complexity, techniques based on targeted quantification using proteotypic peptides are arising. This is an essential systems biology approach; however, for the exploratory discovery of unexpected markers, nontargeted detection of proteins, and protein modifications is indispensable. We present a rapid label‐free shotgun proteomics approach that extracts relevant phenotype‐specific peptide product ion spectra in an automated workflow without prior identification. These product ion spectra are subsequently sequenced with database search and de novo prediction algorithms. We analyzed six potato tuber cultivars grown on three plots of two geographically separated fields in Germany. For data mining about 1.5 million spectra from 107 analyses were aligned and statistically examined in approximately 1 day. Several cultivar‐specific protein markers were detected. Based on de novo ‐sequencing a dominant protein polymorphism not detectable in the available EST‐databases was assigned exclusively to a specific potato cultivar. The approach is applicable to organisms with unsequenced or incomplete genomes and to the automated extraction of relevant mass spectra that potentially cannot be identified by genome/EST‐based search algorithms.
Publikation
Ten years after the establishment of the term proteome, the science surrounding it has yet to fulfill its potential. While a host of technologies have generated lists of protein names, there are only a few reported studies that have examined the individual proteins at the covalent chemical level defined as protein species in 1997 and their function. In the current study, we demonstrate that this is possible with two-dimensional gel electrophoresis (2-DE) and mass spectrometry by presenting clear evidence of in vivo N-terminal alpha A crystallin truncation and relating this newly detected protein species to alpha crystallin activity regulation by protease cleavage in the healthy young murine lens. We assess the present state of technology and suggest a shift in resources and paradigm for the routine attainment of the protein species level in proteomics.
Publikation
The eye lens is a fascinating organ as it is in essence living transparent matter. Lenticular transparency is achieved through the peculiarities of lens morphology, a semi-apoptotic process where cells elongate and loose their organelles and the precise molecular arrangement of the bulk of soluble lenticular proteins, the crystallins. The 16 crystallins ubiquitous in mammals and their modifications have been extensively characterized by 2-DE, liquid chromatography, mass spectrometry and other protein analysis techniques. The various solubility dependant fractions as well as subproteomes of lenticular morphological sections have also been explored in detail. Extensive post translational modification of the crystallins is encountered throughout the lens as a result of ageing and disease resulting in a vast number of protein species. Proteomics methodology is therefore ideal to further comprehensive understanding of this organ and the factors involved in cataractogenesis.
Publikation
Exploration of the lenticular proteome poses a challenging and worthwhile undertaking as cataracts, the products of a disease phenotype elicited by this proteome, remains the leading cause of vision impairment worldwide. The complete ten day old lens proteome of Mus musculus C57BL/6J was resolved into 900 distinct spots by large gel carrier ampholyte based 2‐DE. The predicted amino acid sequences of all 16 crystallins ubiquitous in mammals were corroborated by mass spectrometry (MS). In detailed individual spot analyses, the primary structure of the full murine C57BL/6J beaded filament component phakinin CP49 was sequenced by liquid chromatography/electrospray ionization‐tandem MS and amended at two positions. This definitive polypeptide sequence was aligned to the mouse genome, thus identifying the entire C57BL/6J genomic coding region. Also, two murine C57BL/6J polypeptides, both previously classified as gamma F crystallin, were clearly distinguished by MS and electrophoretic mobility. Both were assigned to their respective genes, one of the polypeptides was reclassified as C57BL/6J gamma E crystallin. Building on these data and previous investigations an updated crystallin reference map was put forth and several non crystallin lenticular components were examined. These results represent the first part of a comprehensive investigation of the mouse lens proteome (http://www.mpiib‐berlin.mpg.de/2D‐PAGE) with emphasis on understanding genetic effects on proteins and disease development.