- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
Introduction: The genus Clusia L. is mostly recognised for the production of prenylated benzophenones and tocotrienol derivatives.Objectives: The objective of this study was to map metabolome variation within Clusia minor organs at different developmental stages.Material and Methods: In total 15 organs/stages (leaf, flower, fruit, and seed) were analysed by UPLC‐MS and 1H‐ and heteronuclear multiple‐bond correlation (HMBC)‐NMR‐based metabolomics.Results: This work led to the assignment of 46 metabolites, belonging to organic acids(1), sugars(2) phenolic acids(1), flavonoids(3) prenylated xanthones(1) benzophenones(4) and tocotrienols(2). Multivariate data analyses explained the variability and classification of samples, highlighting chemical markers that discriminate each organ/stage. Leaves were found to be rich in 5‐hydroxy‐8‐methyltocotrienol (8.5 μg/mg f.w.), while flowers were abundant in the polyprenylated benzophenone nemorosone with maximum level detected in the fully mature flower bud (43 μg/mg f.w.). Nemorosone and 5‐hydroxy tocotrienoloic acid were isolated from FL6 for full structural characterisation. This is the first report of the NMR assignments of 5‐hydroxy tocotrienoloic acid, and its maximum level was detected in the mature fruit at 50 μg/mg f.w. Seeds as typical storage organ were rich in sugars and omega‐6 fatty acids.Conclusion: To the best of our knowledge, this is the first report on a comparative 1D‐/2D‐NMR approach to assess compositional differences in ontogeny studies compared with LC‐MS exemplified by Clusia organs. Results derived from this study provide better understanding of the stages at which maximal production of natural compounds occur and elucidate in which developmental stages the enzymes responsible for the production of such metabolites are preferentially expressed.
Publikation
This is a detailed and user-friendly protocol for the cultivation and successful crossing of Lotus japonicus (L. japonicus) e.g. for the generation of higher order mutants, based on methods previously reported (Grant et al., 1962; Handberg and Stougaards, 1992; Jiang and Gresshoff, 1997; Pajuelo and Stougaard, 2005).
Publikation
The smut fungus Ustilago maydis is an established model organism for elucidating how biotrophic pathogens colonize plants and how gene families contribute to virulence. Here we describe a step by step protocol for the generation of CRISPR plasmids for single and multiplexed gene editing in U. maydis. Furthermore, we describe the necessary steps required for generating edited clonal populations, losing the Cas9 containing plasmid, and for selecting the desired clones.
Publikation
In addition to synthesizing and secreting copious amounts of pectic polymers (Young et al., 2008), Arabidopsis thaliana seed coat epidermal cells produce small amounts of cellulose and hemicelluloses typical of secondary cell walls (Voiniciuc et al., 2015c). These components are intricately linked and are released as a large mucilage capsule upon hydration of mature seeds. Alterations in the structure of minor mucilage components can have dramatic effects on the architecture of this gelatinous cell wall. The immunolabeling protocol described here makes it possible to visualize the distribution of specific polysaccharides in the seed mucilage capsule.
Publikation
The Arabidopsis thaliana seed coat produces large amounts of cell wall polysaccharides, which swell out of the epidermal cells upon hydration of the mature dry seeds. While most mucilage polymers immediately diffuse in the surrounding solution, the remaining fraction tightly adheres to the seed, forming a dense gel-like capsule (Macquet et al., 2007). Recent evidence suggests that the adherence of mucilage is mediated by complex interactions between several cell wall components (Griffiths et al., 2014; Voiniciuc et al., 2015a). Therefore, it is important to evaluate how different cell wall mutants impact this mucilage property. This protocol facilitates the analysis of monosaccharides in sequentially extracted mucilage fractions, and quantifies the detachment of each component from seeds.
Publikation
The Arabidopsis thaliana seed coat epidermis produces copious amounts of mucilage polysaccharides (Haughn and Western, 2012). Characterization of mucilage mutants has identified novel genes required for cell wall biosynthesis and modification (North et al., 2014). The biochemical analysis of seed mucilage is essential to evaluate how different mutations affect cell wall structure (Voiniciuc et al., 2015c). Here we describe a robust method to screen the monosaccharide composition of Arabidopsis seed mucilage using ion chromatography (IC). Mucilage from up to 48 samples can be extracted and prepared for IC analysis within 24 h (only 4 h hands-on). Furthermore, this protocol enables fast separation (31 min per sample), automatic detection and quantification of both neutral and acidic sugars.
Publikation
Damage to plant organs through both biotic and abiotic injury is very common in nature. Arabidopsis thaliana 5-day-old (5-do) seedlings represent an excellent system in which to study plant responses to mechanical wounding, both at the site of the damage and in distal unharmed tissues. Seedlings of wild type, transgenic or mutant lines subjected to single or repetitive cotyledon wounding can be used to quantify morphological alterations (e.g., root length, Gasperini et al., 2015), analyze the dynamics of reporter genes in vivo (Larrieu et al., 2015; Gasperini et al., 2015), follow transcriptional changes by quantitative RT-PCR (Acosta et al., 2013; Gasperini et al., 2015) or examine additional aspects of the wound response with a plethora of downstream procedures. Here we illustrate how to rapidly and reliably wound cotyledons of young seedlings, and show the behavior of two promoters driving the expression of β-glucuronidase (GUS) in entire seedlings and in the primary root meristem, following single or repetitive cotyledon wounding respectively. We describe two procedures that can be easily adapted to specific experimental needs.
Publikation
The β ‐carboline alkaloids harmane (1 ) and norharmane (2 ) were isolated from fruiting bodies of Hygrophorus eburneus (Bull.) Fr. as well as brunnein A (3 ) from Hygrophorus hyacinthinus Quél. (Tricholomataceae, Agaricales) for the first time. Their occurrence within the genus was investigated using liquid chromatography/electrospray ionisation tandem mass spectrometric methods, especially by selected reaction monitoring. Based on these results their chemotaxonomical relevance is discussed.
Publikation
A simple method involving polyamide column chromatography in combination with HPLC‐PAD and HPLC‐ESI[sol ]MS for isolating and identifying two kinds of lignans, arctiin and arctigenin, in the leaves of burdock (Arctium lappa L.) has been established. After extraction of burdock leaves with 80% methanol, the aqueous phase of crude extracts was partitioned between water and chloroform and the aqueous phase was fractionated on a polyamide glass column. The fraction, eluting with 100% methanol, was concentrated and gave a white precipitate at 4°C from which two main compounds were purified by semi‐preparative HPLC. In comparison with the UV and ESI‐MS spectra and the HPLC retention time of authentic standards, the compounds were determined to be arctiin and arctigenin. The extraction[sol ]separation technique was validated using an internal standard method. Copyright © 2005 John Wiley & Sons, Ltd.
Publikation
Natural isothiocyanates, produced during plant tissue damage from methionine‐derived glucosinolates, are potent inducers of mammalian phase 2 detoxification enzymes such as quinone reductase (QR). A greatly simplified bioassay for glucosinolates based on induction and colorimetric detection of QR activity in murine hepatoma cells is described. It is demonstrated that excised leaf disks of Arabidopsis thaliana (ecotype Columbia) can directly and reproducibly substitute for cell‐free leaf extracts as inducers of murine QR, which reduces sample preparation to a minimum and maximizes throughput. A comparison of 1 and 3 mm diameter leaf disks indicated that QR inducer potency was proportional to disk circumference (extent of tissue damage) rather than to area. When compared to the QR inducer potency of the corresponding amount of extract, 1 mm leaf disks were equally effective, whereas 3 mm disks were 70% as potent. The QR inducer potency of leaf disks correlated positively with the content of methionine‐derived glucosinolates, as shown by the analysis of wild‐type plants and mutant lines with lower or higher glucosinolate content. Thus, the microtitre plate‐based assay of single leaf disks provides a robust and inexpensive visual method for rapidly screening large numbers of plants in mapping populations or mutant collections and may be applicable to other glucosinolate‐producing species.