- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
Exploration of the lenticular proteome poses a challenging and worthwhile undertaking as cataracts, the products of a disease phenotype elicited by this proteome, remains the leading cause of vision impairment worldwide. The complete ten day old lens proteome of Mus musculus C57BL/6J was resolved into 900 distinct spots by large gel carrier ampholyte based 2‐DE. The predicted amino acid sequences of all 16 crystallins ubiquitous in mammals were corroborated by mass spectrometry (MS). In detailed individual spot analyses, the primary structure of the full murine C57BL/6J beaded filament component phakinin CP49 was sequenced by liquid chromatography/electrospray ionization‐tandem MS and amended at two positions. This definitive polypeptide sequence was aligned to the mouse genome, thus identifying the entire C57BL/6J genomic coding region. Also, two murine C57BL/6J polypeptides, both previously classified as gamma F crystallin, were clearly distinguished by MS and electrophoretic mobility. Both were assigned to their respective genes, one of the polypeptides was reclassified as C57BL/6J gamma E crystallin. Building on these data and previous investigations an updated crystallin reference map was put forth and several non crystallin lenticular components were examined. These results represent the first part of a comprehensive investigation of the mouse lens proteome (http://www.mpiib‐berlin.mpg.de/2D‐PAGE) with emphasis on understanding genetic effects on proteins and disease development.
Publikation
Peptide mass fingerprinting by MALDI-MS and sequencing by tandem mass spectrometry have evolved into the major methods for identification of proteins following separation by two-dimensional gel electrophoresis, SDS–PAGE or liquid chromatography. One main technological goal of proteome analyses beside high sensitivity and automation was the comprehensive analysis of proteins. Therefore, the protein species level with the essential information on co- and post-translational modifications must be achieved. The power of peptide mass fingerprinting for protein identification was described here, as exemplified by the identification of protein species with high molecular masses (spectrin α and β), low molecular masses (elongation factor EF-TU fragments), splice variants (α A crystallin), aggregates with disulfide bridges (alkylhydroperoxide reductase), and phosphorylated proteins (heat shock protein 27). Helpful tools for these analyses were the use of the minimal protein identifier concept and the software program MS-Screener to remove mass peaks assignable to contaminants and neighbor spots.