- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
Plant phytohormone pathways are regulated by an intricate network of signaling components and modulators, many of which still remain unknown. Here, we report a forward chemical genetics approach for the identification of functional SA agonists in Arabidopsis thaliana that revealed Neratinib (Ner), a covalent pan-HER kinase inhibitor drug in humans, as a modulator of SA signaling. Instead of a protein kinase, chemoproteomics unveiled that Ner covalently modifies a surface-exposed cysteine residue of Arabidopsis epoxide hydrolase isoform 7 (AtEH7), thereby triggering its allosteric inhibition. Physiologically, the Ner application induces jasmonate metabolism in an AtEH7-dependent manner as an early response. In addition, it modulates PATHOGENESIS RELATED 1 (PR1) expression as a hallmark of SA signaling activation as a later effect. AtEH7, however, is not the exclusive target for this physiological readout induced by Ner. Although the underlying molecular mechanisms of AtEH7-dependent modulation of jasmonate signaling and Ner-induced PR1-dependent activation of SA signaling and thus defense response regulation remain unknown, our present work illustrates the powerful combination of forward chemical genetics and chemical proteomics for identifying novel phytohormone signaling modulatory factors. It also suggests that marginally explored metabolic enzymes such as epoxide hydrolases may have further physiological roles in modulating signaling.
Publikation
Enzyme-based synthetic chemistry provides a green way to synthesize industrially important chemical scaffolds and provides incomparable substrate specificity and unmatched stereo-, regio-, and chemoselective product formation. However, using biocatalysts at an industrial scale has its challenges, like their narrow substrate scope, limited stability in large-scale one-pot reactions, and low expression levels. These limitations can be overcome by engineering and fine-tuning these biocatalysts using advanced protein engineering methods. A detailed understanding of the enzyme structure and catalytic mechanism and its structure–function relationship, cooperativity in binding of substrates, and dynamics of substrate–enzyme–cofactor complexes is essential for rational enzyme engineering for a specific purpose. This Review covers all these aspects along with an in-depth categorization of various industrially and pharmaceutically crucial bisubstrate enzymes based on their reaction mechanisms and their active site and substrate/cofactor-binding site structures. As the bisubstrate enzymes constitute around 60% of the known industrially important enzymes, studying their mechanism of actions and structure–activity relationship gives significant insight into deciding the targets for protein engineering for developing industrial biocatalysts. Thus, this Review is focused on providing a comprehensive knowledge of the bisubstrate enzymes’ structure, their mechanisms, and protein engineering approaches to develop them into industrial biocatalysts.
Publikation
Amino acids (AAs), important constituents of natural moisturizing factors (NMFs) of the skin are decreased in diseased conditions such as psoriasis and atopic dermatitis. No study so far investigated the uptake of AAs into isolated corneocytes (COR). The present study was performed using 19 AAs, including taurine (TAU), to measure their amount diffused into the COR and binding of these AAs to keratin. Incubation of alanine, aspartic acid, asparagine, glutamine, glutamic acid, histidine, proline, serine and TAU with the isolated COR showed uptake after 24 h of 51.6, 95.4, 98.6, 94.1, 95.6, 90.1, 94.6, 72.9 and 57.8 %, respectively, into the COR but no binding with keratin. Uptake of TAU was validated by time dependent in-vitro diffusion models 'without COR and 'with COR'. The time dependent curve fitting showed that in in-vitro diffusion model 'without COR' there was no change in the total concentration of TAU until 72 hours, while in diffusion model 'with COR' the total conc. decreased to 37.8 % after 72 hours. The Pearson's correlation coefficient 'r' between the conc. curves of both in-vitro diffusion models was -0.54 that was an evidence of significant amount of TAU uptake by the COR. AAs as part of the NMFs have a great potential to be diffused into the COR. This property of the AAs can be employed in further dermatological research on diseased or aged skin conditions with NMFs deficiency.
Publikation
Hydnora abyssinica A.Br. (Hydnoraceae), a holoparasitic herb, is for the first time recorded for Abyan governorate of South Yemen. Flowers of this species were studied for their ethnobotanical, biological and chemical properties for the first time. In South Yemen, they are traditionally used as wild food and to cure stomach diseases, gastric ulcer and cancer. Phytochemical analysis of the extracts showed the presence of terpenes, tannins, phenols, and flavonoids. The volatile components of the air-dried powdered flowers were identified using a static headspace GC/MS analysis as acetic acid, ethyl acetate, sabinene, α-terpinene, (+)-D-limonene and γ-terpinene. These volatile compounds that characterize the odor and taste of the flowers were detected for the first time in a species of the family Hydnoraceae. The flowers were extracted by n-hexane, dichlormethane, ethyl acetate, ethanol, methanol and water. With exception of the water extract all extracts demonstrated activities against Gram-positive bacteria as well as remarkable radical scavenging activities in DPPH assay. Ethyl acetate, methanol and water extracts exhibited good antifungal activities. The cytotoxic activity of the extracts against FL cells, measured in neutral red assay, was only weak (IC50 > 500 μg /mL). The results justify the traditional use of the flowers of Hydnora abyssinica in South Yemen.
Publikation
The parathyroid hormone (PTH) is an 84-residue peptide, which regulates the blood Ca2+ level via GPCR binding and subsequent activation of intracellular signaling cascades. PTH is posttranslationally phosphorylated in the parathyroid glands; however, the functional significance of this processes is not well characterized. In the present study, mass spectrometric analysis revealed three sites of phosphorylation, and NMR spectroscopy assigned Ser1, Ser3, and Ser17 as modified sites. These sites are located at the N-terminus of the hormone, which is important for receptor recognition and activation. NMR shows further that the three phosphate groups remotely disturb the α-helical propensity up to Ala36. An intracellular cAMP accumulation assay elucidated the biological significance of this phosphorylation because it ablated the PTH-mediated signaling. Our studies thus shed light on functional implications of phosphorylation at native PTH as an additional level of regulation.
Publikation
Jasmonates are lipid-derived signals that mediate plant stress responses and development processes. Enzymes participating in biosynthesis of jasmonic acid (JA) (1, 2) and components of JA signaling have been extensively characterized by biochemical and molecular-genetic tools. Mutants of Arabidopsis and tomato have helped to define the pathway for synthesis of jasmonoyl-isoleucine (JA-Ile), the active form of JA, and to identify the F-box protein COI1 as central regulatory unit. However, details of the molecular mechanism of JA signaling have only recently been unraveled by the discovery of JAZ proteins that function in transcriptional repression. The emerging picture of JA perception and signaling cascade implies the SCFCOI1 complex operating as E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ repressors for degradation by the 26S-proteasome pathway, thereby allowing the transcription factor MYC2 to activate gene expression. The fact that only one particular stereoisomer, (+)-7-iso-JA-l-Ile (4), shows high biological activity suggests that epimerization between active and inactive diastereomers could be a mechanism for turning JA signaling on or off. The recent demonstration that COI1 directly binds (+)-7-iso-JA-l-Ile (4) and thus functions as JA receptor revealed that formation of the ternary complex COI1-JA-Ile-JAZ is an ordered process. The pronounced differences in biological activity of JA stereoisomers also imply strict stereospecific control of product formation along the JA biosynthetic pathway. The pathway of JA biosynthesis has been unraveled, and most of the participating enzymes are well-characterized. For key enzymes of JA biosynthesis the crystal structures have been established, allowing insight into the mechanisms of catalysis and modes of substrate binding that lead to formation of stereospecific products.
Publikation
Indole-3-acetic acid (IAA or auxin) is essential throughout the life cycle of a plant. It controls diverse cellular processes, including gene expression. The hormone is perceived by a ubiquitin protein ligase (E3) and triggers the rapid destruction of repressors, called Aux/IAA proteins. The first structural model of a plant hormone receptor illustrates how auxin promotes Aux/IAA substrate recruitment by extending the hydrophobic protein-interaction surface. This work establishes a novel mechanism of E3 regulation by small molecules and promises a novel strategy for the treatment of human disorders associated with defective ubiquitin-dependent proteolysis.
Publikation
Chemical investigation of Stephania rotunda Lour. growing in Viet Nam led to the isolation and structural elucidation of three new alkaloids, 5-hydroxy-6,7-dimethoxy-3,4-dihydroisoquinolin-1(2H)-one (1), thaicanine 4-O-β-L-glucoside (6), as well as (–)-thaicanine N-oxide (4-hydroxycorynoxidine) (8), along with 23 known alkaloids. These structures were determined on the basis of MS and NMR spectroscopic data.
Publikation
2,4-Dimethoxy-2-methyl-6H-pyran-3-one (1), a hitherto unknown natural product, and the calcium salt of rehmapicroside (2) have been isolated from rhizomes of the Vietnamese variety of Rehmannia glutinosa Libosch together with a series of known compounds: norcarotenoids (3–5), 2-formyl-5-hydroxymethylfurane (6), the iridoid rehmaglutin D (7), iridoid glycosides (8–12) and phenylethyl alcohol glycosides (13–17). Their structures were determined by mass and NMR spectroscopy.