logo ipb
logo ipb mobile
x
  • Deutsch
  • English
Benutzeranmeldung
  • Forschung
    • Leitbild und Forschungsprofil

    • Molekulare Signalverarbeitung

      • Sekretariat & Alle Mitarbeiter
      • Technische Ausstattung MSV
      • Publikationen
      • Forschungsgruppen
        • Nährstoffperzeption
          • Projekte
          • Mitarbeiter
          • Publikationen
          • Kooperationen
        • Symbiose-Signaling
          • Projekte
          • Mitarbeiter
          • Publikationen
          • Kooperationen
        • Jasmonat-Signaling
          • Projekte
          • Mitarbeiter
          • Publikationen
          • Kooperationen
    • Natur- und Wirkstoffchemie

      • Sekretariat & Alle Mitarbeiter
      • Technische Ausstattung NWC
      • Publikationen
      • Forschungsgruppen
        • Wirkstoffe
          • Projekte
          • Mitarbeiter
          • Publikationen
          • Kooperationen
        • Naturstoffe & Metabolomics
          • Projekte
          • Mitarbeiter
          • Publikationen
          • Kooperationen
        • Biotechnologie
          • Projekte
          • Mitarbeiter
          • Publikationen
          • Kooperationen
        • Biofunktionale Synthese
          • Projekte
          • Mitarbeiter
          • Publikationen
          • Kooperationen
        • Computerchemie
          • Projekte
          • Mitarbeiter
          • Publikationen
          • Kooperationen
        • Daten & Ressourcen
          • Projekte
          • Mitarbeiter
          • Publikationen
          • Kooperationen
    • Biochemie pflanzlicher Interaktionen

      • Sekretariat & Alle Mitarbeiter
      • Technische Ausstattung BPI
      • Publikationen
      • Forschungsgruppen
        • Kalzium-abhängige Proteinkinasen, CDPKs
          • Projekte
          • Mitarbeiter
          • Publikationen
          • Kooperationen
        • Zelluläre Signaltransduktion
          • Projekte
          • Mitarbeiter
          • Publikationen
          • Kooperationen
        • Metaboliten-basierte Abwehrmechanismen
          • Projekte
          • Mitarbeiter
          • Publikationen
          • Kooperationen
        • Zellkernprozesse in der pflanzlichen Abwehr
          • Projekte
          • Mitarbeiter
          • Publikationen
          • Kooperationen
    • Stoffwechsel- und Zellbiologie

      • Sekretariat & Alle Mitarbeiter
      • Technische Ausstattung SZB
      • Publikationen
      • Forschungsgruppen
        • Glanduläre Trichome und Isoprenoidbiosynthese
          • Projekte
          • Mitarbeiter
          • Publikationen
          • Kooperationen
        • Jasmonatfunktion & Mykorrhiza
          • Projekte
          • Mitarbeiter
          • Publikationen
          • Kooperationen
        • Phenylpropanstoffwechsel
          • Projekte
          • Mitarbeiter
          • Publikationen
          • Kooperationen
        • Synthetische Biologie
          • Projekte
          • Mitarbeiter
          • Publikationen
          • Kooperationen
    • Unabhängige Nachwuchsgruppen

      • Forschungsgruppen
        • Rezeptorbiochemie
          • Projekte
          • Mitarbeiter
          • Publikationen
          • Kooperationen
    • Program Center MetaCom

      • Sekretariat & Alle Mitarbeiter
      • Publikationen
      • Unser Equipment
      • Forschungsgruppen
        • MetaCom Metabolomics-Einheit
          • Projekte
          • Mitarbeiter
          • Publikationen
          • Methoden
        • MetaCom Analytisches Labor
          • Projekte
          • Mitarbeiter
          • Publikationen
          • Methoden
        • Computergestützte Pflanzenbiochemie
          • Projekte
          • Mitarbeiter
          • Publikationen
          • Kooperationen
        • MetaCom Juniorforschungsgruppe
          • Projekte
          • Mitarbeiter
    • Publikationen

    • Gute Wissenschaftliche Praxis

    • Forschungsförderung

    • Netzwerke und Verbundprojekte

      • Verbundprojekte als Koordinator
        • Abgeschlossene Projekte als Koordinator
      • Verbundprojekte als Partner
        • Beendete Projekte als Partner
      • Netzwerke
    • Symposien und Kolloquien

      • Vorträge
        • IPB-Seminare
      • Leibniz Plant Biochemistry Symposia
    • Alumni-Forschungsgruppen

      • Forschungsgruppen
        • Auxin-Signaltransduktion
          • Projekte
          • Publikationen
        • Bioorganische Chemie
          • Projekte
          • Publikationen
        • Designer-Glykane
          • Projekte
          • Publikationen
        • Jasmonat-Wirkungsweise
          • Publikationen
        • Proteinerkennung und -abbau
          • Projekte
          • Publikationen
        • Regulatorische RNAs (MLU-assoziiert)
          • Projekte
          • Publikationen
        • Signalintegration
          • Projekte
          • Publikationen
        • Ubiquitinierung in der Immunantwort
          • Projekte
          • Publikationen
        • Zelluläre Koordination
          • Projekte
          • Publikationen
  • Infrastruktur
    • Datenbanken und Tools

      • XCMS
      • Rdisop
      • CAMERA
      • MetShot
      • MassBank
      • MetFrag
      • MetFamily
      • PaCeQuant
      • CytoskeletonAnalyzer
      • GoldenMutagenesis
      • cisHighlight
      • FlagScreen
      • RootDetection
    • Technische Ausstattung

    • Zellbiologie-Plattform

    • Gewächshäuser und Phytokammern

    • Bibliothek

      • Online Public Access Catalogue, OPAC
      • Elektronische Zeitschriftenbibliothek, EZB
      • Angebote für Mitarbeiter
  • Institut
    • Organigramm

    • Leitung und Gremien

      • Stiftungsrat
      • Wissenschaftlicher Beirat
      • Geschäftsführung / Direktorium
      • Wissenschaftlicher Institutsrat
      • Beauftragte
      • Personalrat
      • Satzung
    • Administration und Infrastruktur

      • Sekretariat & Alle Mitarbeiter
      • Arbeitsgruppen
        • Personal
        • Finanzen
        • Einkauf
        • IT & Geräteservice
        • Versuchsgärtnerei
        • Gebäude & Liegenschaften
        • Bibliothek
        • Digitalisierung
    • Energiemanagement

      • Ziele & Maßnahmen
      • Energiemanagementteam
    • Vielfalt, Familie, Chancengleichheit

      • Diversität
      • Chancengleichheit
      • Familienfreundlichkeit
      • Fort- und Weiterbildungen
      • Eingliederung und Gesundheit
      • Allgemeines Gleichbehandlungsgesetz (AGG)
    • Öffentliche Ausschreibungen

    • Patente und Lizenzen

    • IPB Welcoming Culture

    • Gästehäuser

    • IPB-Lageplan

    • Geschichte des Instituts

      • Bildergalerie zur Historie
      • Alte Filmsequenzen zum Institut
      • Historischer Massenspektrograph
    • Alumni

      • Karrieresprungbrett IPB
  • Karriere
    • Datenschutzhinweise für Bewerber

    • Doktorandenprogramm

      • Doktorandenvertretung
      • DoCou - Doctoral Training Courses
      • Plant Science Student Conference
    • Postdoktoranden

    • Berufsausbildung

  • Öffentlichkeit
    • Aktuelles

      • 2024
      • 2023
      • 2022
      • Archiv Aktuelles
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • vor 2014
    • Newsticker Wissenschaft

      • Newsticker 2024
      • Newsticker 2023
      • Newsticker 2022
      • Archiv Newsticker
        • Newsticker 2021
        • Newsticker 2020
        • Newsticker 2019
    • Pressemitteilungen

      • 2024
      • 2023
      • 2022
      • Archiv Pressemitteilungen
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
        • 2012
        • 2011
        • 2010
        • 2009
        • 2008
        • 2007
        • 2006
        • 2005
        • 2004
        • 2003
        • 2002
    • IPB Pressespiegel

    • LANGE NACHT, DIE WISSEN SCHAFFT: PROGRAMM

    • IPB Newsletter

    • IPB Geschichtsbuch

    • Scientific Reports / Research Highlights

    • Veranstaltungen

      • 2024 Lange Nacht der Wissenschaft
      • 2024 Leibniz Plant Biochemistry Symposium
      • Archiv Veranstaltungen
    • Cover Art

    • Citizen Science: Pilzberatung

      • Das Reich der Pilze
      • Pilzberatung
      • Forschung an Pilzen
  • Kontakt
    • Anfahrt

    • Mitarbeiterverzeichnis

    • Impressum

    • Datenschutz

    • Barrierefreiheit

  1. Startseite
  2. Forschung
  3. Publikationen

    • Leitbild und Forschungsprofil
    • Trenner 0
    • Molekulare Signalverarbeitung
      • Sekretariat & Alle Mitarbeiter
      • Technische Ausstattung MSV
      • Publikationen
      • Forschungsgruppen
        • Nährstoffperzeption
        • Symbiose-Signaling
        • Jasmonat-Signaling
    • Natur- und Wirkstoffchemie
      • Sekretariat & Alle Mitarbeiter
      • Technische Ausstattung NWC
      • Publikationen
      • Forschungsgruppen
        • Wirkstoffe
        • Naturstoffe & Metabolomics
        • Biotechnologie
        • Biofunktionale Synthese
        • Computerchemie
        • Daten & Ressourcen
    • Biochemie pflanzlicher Interaktionen
      • Sekretariat & Alle Mitarbeiter
      • Technische Ausstattung BPI
      • Publikationen
      • Forschungsgruppen
        • Kalzium-abhängige Proteinkinasen, CDPKs
        • Zelluläre Signaltransduktion
        • Metaboliten-basierte Abwehrmechanismen
        • Zellkernprozesse in der pflanzlichen Abwehr
    • Stoffwechsel- und Zellbiologie
      • Sekretariat & Alle Mitarbeiter
      • Technische Ausstattung SZB
      • Publikationen
      • Forschungsgruppen
        • Glanduläre Trichome und Isoprenoidbiosynthese
        • Jasmonatfunktion & Mykorrhiza
        • Phenylpropanstoffwechsel
        • Synthetische Biologie
    • Unabhängige Nachwuchsgruppen
      • Forschungsgruppen
        • Rezeptorbiochemie
    • Program Center MetaCom
      • Sekretariat & Alle Mitarbeiter
      • Publikationen
      • Unser Equipment
      • Forschungsgruppen
        • MetaCom Metabolomics-Einheit
        • MetaCom Analytisches Labor
        • Computergestützte Pflanzenbiochemie
        • MetaCom Juniorforschungsgruppe
    • Trenner 1
    • Publikationen
    • Gute Wissenschaftliche Praxis
    • Forschungsförderung
    • Trenner
    • Netzwerke und Verbundprojekte
      • Verbundprojekte als Koordinator
        • Abgeschlossene Projekte als Koordinator
      • Verbundprojekte als Partner
        • Beendete Projekte als Partner
      • Netzwerke
    • Symposien und Kolloquien
      • Vorträge
        • IPB-Seminare
      • Leibniz Plant Biochemistry Symposia
    • Trenner
    • Alumni-Forschungsgruppen
      • Forschungsgruppen
        • Auxin-Signaltransduktion
        • Bioorganische Chemie
        • Designer-Glykane
        • Jasmonat-Wirkungsweise
        • Proteinerkennung und -abbau
        • Regulatorische RNAs (MLU-assoziiert)
        • Signalintegration
        • Ubiquitinierung in der Immunantwort
        • Zelluläre Koordination

Suchfilter

  • Typ der Publikation
    • Publikation (11)
  • Erscheinungsjahr
    • 2008 (3)
      2010 (1)
      2014 (1)
      2015 (3)
      2017 (1)
      2019 (2)
  • Journal / Buchreihe / Preprint-Server Nach Häufigkeit alphabetisch sortiert
    • Phytochemistry (132)
      Plant J. (95)
      Plant Physiol. (94)
      0 (84)
      Plant Cell (55)
      Planta (54)
      bioRxiv (51)
      New Phytol. (50)
      Methods Mol. Biol. (41)
      Front. Plant Sci. (40)
      Int. J. Mol. Sci. (33)
      J. Biol. Chem. (33)
      J. Exp. Bot. (33)
      PLOS ONE (30)
      FEBS Lett. (29)
      Molecules (28)
      Vietnam J. Chem. (26)
      Proc. Natl. Acad. Sci. U.S.A. (25)
      Angew. Chem. Int. Ed. (22)
      J. Plant Physiol. (21)
      Angew. Chem. (18)
      Tetrahedron Lett. (18)
      Trends Plant Sci. (18)
      Plant Cell Physiol. (17)
      Sci. Rep. (17)
      Metabolomics (16)
      Mol. Plant Microbe Interact. (16)
      ChemBioChem (15)
      Plants (15)
      Anal. Bioanal. Chem. (14)
      BMC Plant Biol. (14)
      J. Agr. Food Chem. (14)
      J. Org. Chem. (14)
      Nat. Prod. Commun. (14)
      Plant Signal Behav. (14)
      Plant Cell Environ. (13)
      Plant Mol. Biol. (13)
      Adv. Exp. Med. Biol. (12)
      Anal. Chem. (12)
      Biochem. Syst. Ecol. (12)
      Chem. Commun. (12)
      Curr. Biol. (12)
      Curr. Opin. Plant Biol. (12)
      Food Chem. (12)
      J. Nat. Prod. (12)
      Metabolites (12)
      Org. Biomol. Chem. (12)
      Synthesis (12)
      Biol. Chem. (11)
      Eur. J. Org. Chem. (11)
      Nat. Commun. (11)
      Planta Med. (11)
      Tetrahedron (11)
      BMC Bioinformatics (10)
      J. Cheminform. (10)
      J. Mass Spectrom. (10)
      Nat. Prod. Res. (10)
      Eur. J. Med. Chem. (9)
      Mol. Plant (9)
      Synlett (9)
      Z. Naturforsch. C (9)
      Beilstein J. Org. Chem. (8)
      ChemCatChem (8)
      Fitoterapia (8)
      J. Proteome Res. (8)
      Mol. Plant Pathol. (8)
      Mycorrhiza (8)
      Phytochem. Anal. (8)
      Plant Biotechnol. J. (8)
      Proteomics (8)
      Theor. Appl. Genet. (8)
      Amino Acids (7)
      Chem.-Eur. J. (7)
      Org. Lett. (7)
      Pharmazie (7)
      Plant Growth Regul. (7)
      Plant Sci. (7)
      ACS Catal. (6)
      BIOspektrum (6)
      Bio Protoc. (6)
      Biochimie (6)
      Biomolecules (6)
      Chem. Biodivers. (6)
      Dalton Trans. (6)
      EMBO J. (6)
      Eur. J. Biochem. (6)
      J. Inorg. Biochem. (6)
      J. Med. Chem. (6)
      J. Pharm. Biomed. Anal. (6)
      Nat. Chem. Biol. (6)
      Nat. Plants (6)
      PLOS Pathog. (6)
      Physiol. Plant. (6)
      Plant Biol. (6)
      Plant Cell Tiss. Organ Cult. (6)
      RSC Adv. (6)
      Science (6)
      ACS Chem. Biol. (5)
      Anal. Biochem. (5)
      Biologie in unserer Zeit (5)
      GigaScience (0)
  • Autor Nach Häufigkeit alphabetisch sortiert
    • Neumann, S. (9)
      Grosse, I. (3)
      Steinbeck, C. (3)
      Gonzalez-Beltran, A. (2)
      Moreno, P. (2)
      Nettling, M. (2)
      Posch, S. (2)
      Rocca-Serra, P. (2)
      Ruttkies, C. (2)
      Sansone, S.-A. (2)
      Tautenhahn, R. (2)
      Treutler, H. (2)
      Beisken, S. (1)
      Bergmann, S. (1)
      Bradbury, J. (1)
      Böttcher, C. (1)
      Capuccini, M. (1)
      Cascante, M. (1)
      Cerquides, J. (1)
      Dekker, A. (1)
      Dornfeldt, S. (1)
      Dvorzak, M. (1)
      Ebbels, T. M. D. (1)
      Egert, B. (1)
      Eisenberg, T. (1)
      Emami Khoonsari, P. (1)
      Foguet, C. (1)
      Gander, E. (1)
      Glen, R. (1)
      Grau, J. (1)
      Gröpl, C. (1)
      Günther, U. L. (1)
      Handakas, E. (1)
      Hankemeier, T. (1)
      Harsha, B. (1)
      Hastings, J. (1)
      Haug, K. (1)
      Herman, S. (1)
      Holub, P. (1)
      Izzo, M. (1)
      Jacob, D. (1)
      Johnson, D. (1)
      Jourdan, F. (1)
      Kale, N. (1)
      Karaman, I. (1)
      Keilwagen, J. (1)
      Khalili, B. (1)
      Kleb, U. (1)
      Kuhn, S. (1)
      Kultima, K. (1)
      Lampa, S. (1)
      Lange, E. (1)
      Larsson, A. (1)
      Libiseller, G. (1)
      Ludwig, C. (1)
      Madeo, F. (1)
      Magnes, C. (1)
      Maguire, E. (1)
      Muthukrishnan, V. (1)
      Müller-Hannemann, M. (1)
      Novella, J. A. (1)
      O'Donovan, C. (1)
      Pearce, J. T. M. (1)
      Peluso, A. (1)
      Peters, K. (1)
      Pieber, T. (1)
      Piras, M. E. (1)
      Pireddu, L. (1)
      Reed, M. A. C. (1)
      Roger, P. (1)
      Rosato, A. (1)
      Rueedi, R. (1)
      Sadawi, N. (1)
      Salek, R. M. (1)
      Schmidt, S. (1)
      Schober, D. (1)
      Selivanov, V. (1)
      Sinner, F. (1)
      Spjuth, O. (1)
      Taruttis, F. (1)
      Thévenot, E. A. (1)
      Tomasoni, M. (1)
      Trausinger, G. (1)
      Tudose, I. (1)
      Viant, M. R. (1)
      Weber, R. J. M. (1)
      Wolf, S. (1)
      Zanetti, G. (1)
      de Atauri, P. (1)
      van Rijswijk, M. (1)
      van Vliet, M. (1)
  • Erscheinungsjahr
  • Typ der Publikation
Aktive Filter: Journal / Buchreihe / Preprint-Server Nach Häufigkeit alphabetisch sortiert: BMC Bioinformatics Journal / Buchreihe / Preprint-Server Nach Häufigkeit alphabetisch sortiert: GigaScience Alle Filter entfernen
Zeige Ergebnisse 1 bis 10 von 11.
  • Ergebnisse als:
  • Druckansicht
  • Endnote (RIS)
  • BibTeX
  • Tabelle: CSV | HTML
Ergebnisse pro Seite:
  • 1
  • 2

Publikation

Ruttkies, C.; Neumann, S.; Posch, S.; Improving MetFrag with statistical learning of fragment annotations BMC Bioinformatics 20 376 (2019) DOI: 10.1186/s12859-019-2954-7
  • Abstract
  • BibText
  • RIS

BackgroundMolecule identification is a crucial step in metabolomics and environmental sciences. Besides in silico fragmentation, as performed by MetFrag, also machine learning and statistical methods evolved, showing an improvement in molecule annotation based on MS/MS data. In this work we present a new statistical scoring method where annotations of m/z fragment peaks to fragment-structures are learned in a training step. Based on a Bayesian model, two additional scoring terms are integrated into the new MetFrag2.4.5 and evaluated on the test data set of the CASMI 2016 contest.ResultsThe results on the 87 MS/MS spectra from positive and negative mode show a substantial improvement of the results compared to submissions made by the former MetFrag approach. Top1 rankings increased from 5 to 21 and Top10 rankings from 39 to 55 both showing higher values than for CSI:IOKR, the winner of the CASMI 2016 contest. For the negative mode spectra, MetFrag’s statistical scoring outperforms all other participants which submitted results for this type of spectra.ConclusionsThis study shows how statistical learning can improve molecular structure identification based on MS/MS data compared on the same method using combinatorial in silico fragmentation only. MetFrag2.4.5 shows especially in negative mode a better performance compared to the other participating approaches.

Publikation

Peters, K.; Bradbury, J.; Bergmann, S.; Capuccini, M.; Cascante, M.; de Atauri, P.; Ebbels, T. M. D.; Foguet, C.; Glen, R.; Gonzalez-Beltran, A.; Günther, U. L.; Handakas, E.; Hankemeier, T.; Haug, K.; Herman, S.; Holub, P.; Izzo, M.; Jacob, D.; Johnson, D.; Jourdan, F.; Kale, N.; Karaman, I.; Khalili, B.; Emami Khoonsari, P.; Kultima, K.; Lampa, S.; Larsson, A.; Ludwig, C.; Moreno, P.; Neumann, S.; Novella, J. A.; O'Donovan, C.; Pearce, J. T. M.; Peluso, A.; Piras, M. E.; Pireddu, L.; Reed, M. A. C.; Rocca-Serra, P.; Roger, P.; Rosato, A.; Rueedi, R.; Ruttkies, C.; Sadawi, N.; Salek, R. M.; Sansone, S.-A.; Selivanov, V.; Spjuth, O.; Schober, D.; Thévenot, E. A.; Tomasoni, M.; van Rijswijk, M.; van Vliet, M.; Viant, M. R.; Weber, R. J. M.; Zanetti, G.; Steinbeck, C.; PhenoMeNal: processing and analysis of metabolomics data in the cloud GigaScience 8 giy149 (2019) DOI: 10.1093/gigascience/giy149
  • Abstract
  • BibText
  • RIS

BackgroundMetabolomics is the comprehensive study of a multitude of small molecules to gain insight into an organism's metabolism. The research field is dynamic and expanding with applications across biomedical, biotechnological, and many other applied biological domains. Its computationally intensive nature has driven requirements for open data formats, data repositories, and data analysis tools. However, the rapid progress has resulted in a mosaic of independent, and sometimes incompatible, analysis methods that are difficult to connect into a useful and complete data analysis solution.FindingsPhenoMeNal (Phenome and Metabolome aNalysis) is an advanced and complete solution to set up Infrastructure-as-a-Service (IaaS) that brings workflow-oriented, interoperable metabolomics data analysis platforms into the cloud. PhenoMeNal seamlessly integrates a wide array of existing open-source tools that are tested and packaged as Docker containers through the project's continuous integration process and deployed based on a kubernetes orchestration framework. It also provides a number of standardized, automated, and published analysis workflows in the user interfaces Galaxy, Jupyter, Luigi, and Pachyderm.ConclusionsPhenoMeNal constitutes a keystone solution in cloud e-infrastructures available for metabolomics. PhenoMeNal is a unique and complete solution for setting up cloud e-infrastructures through easy-to-use web interfaces that can be scaled to any custom public and private cloud environment. By harmonizing and automating software installation and configuration and through ready-to-use scientific workflow user interfaces, PhenoMeNal has succeeded in providing scientists with workflow-driven, reproducible, and shareable metabolomics data analysis platforms that are interfaced through standard data formats, representative datasets, versioned, and have been tested for reproducibility and interoperability. The elastic implementation of PhenoMeNal further allows easy adaptation of the infrastructure to other application areas and ‘omics research domains.

Publikation

Nettling, M.; Treutler, H.; Cerquides, J.; Grosse, I.; Combining phylogenetic footprinting with motif models incorporating intra-motif dependencies BMC Bioinformatics 18 141 (2017) DOI: 10.1186/s12859-017-1495-1
  • Abstract
  • BibText
  • RIS

BackgroundTranscriptional gene regulation is a fundamental process in nature, and the experimental and computational investigation of DNA binding motifs and their binding sites is a prerequisite for elucidating this process. Approaches for de-novo motif discovery can be subdivided in phylogenetic footprinting that takes into account phylogenetic dependencies in aligned sequences of more than one species and non-phylogenetic approaches based on sequences from only one species that typically take into account intra-motif dependencies. It has been shown that modeling (i) phylogenetic dependencies as well as (ii) intra-motif dependencies separately improves de-novo motif discovery, but there is no approach capable of modeling both (i) and (ii) simultaneously.ResultsHere, we present an approach for de-novo motif discovery that combines phylogenetic footprinting with motif models capable of taking into account intra-motif dependencies. We study the degree of intra-motif dependencies inferred by this approach from ChIP-seq data of 35 transcription factors. We find that significant intra-motif dependencies of orders 1 and 2 are present in all 35 datasets and that intra-motif dependencies of order 2 are typically stronger than those of order 1. We also find that the presented approach improves the classification performance of phylogenetic footprinting in all 35 datasets and that incorporating intra-motif dependencies of order 2 yields a higher classification performance than incorporating such dependencies of only order 1.ConclusionCombining phylogenetic footprinting with motif models incorporating intra-motif dependencies leads to an improved performance in the classification of transcription factor binding sites. This may advance our understanding of transcriptional gene regulation and its evolution.

Publikation

Moreno, P.; Beisken, S.; Harsha, B.; Muthukrishnan, V.; Tudose, I.; Dekker, A.; Dornfeldt, S.; Taruttis, F.; Grosse, I.; Hastings, J.; Neumann, S.; Steinbeck, C.; BiNChE: A web tool and library for chemical enrichment analysis based on the ChEBI ontology BMC Bioinformatics 16 56 (2015) DOI: 10.1186/s12859-015-0486-3
  • Abstract
  • BibText
  • RIS

BackgroundOntology-based enrichment analysis aids in the interpretation and understanding of large-scale biological data. Ontologies are hierarchies of biologically relevant groupings. Using ontology annotations, which link ontology classes to biological entities, enrichment analysis methods assess whether there is a significant over or under representation of entities for ontology classes. While many tools exist that run enrichment analysis for protein sets annotated with the Gene Ontology, there are only a few that can be used for small molecules enrichment analysis.ResultsWe describe BiNChE, an enrichment analysis tool for small molecules based on the ChEBI Ontology. BiNChE displays an interactive graph that can be exported as a high-resolution image or in network formats. The tool provides plain, weighted and fragment analysis based on either the ChEBI Role Ontology or the ChEBI Structural Ontology.ConclusionsBiNChE aids in the exploration of large sets of small molecules produced within Metabolomics or other Systems Biology research contexts. The open-source tool provides easy and highly interactive web access to enrichment analysis with the ChEBI ontology tool and is additionally available as a standalone library.

Publikation

Libiseller, G.; Dvorzak, M.; Kleb, U.; Gander, E.; Eisenberg, T.; Madeo, F.; Neumann, S.; Trausinger, G.; Sinner, F.; Pieber, T.; Magnes, C.; IPO: a tool for automated optimization of XCMS parameters BMC Bioinformatics 16 118 (2015) DOI: 10.1186/s12859-015-0562-8
  • Abstract
  • BibText
  • RIS

BackgroundUntargeted metabolomics generates a huge amount of data. Software packages for automated data processing are crucial to successfully process these data. A variety of such software packages exist, but the outcome of data processing strongly depends on algorithm parameter settings. If they are not carefully chosen, suboptimal parameter settings can easily lead to biased results. Therefore, parameter settings also require optimization. Several parameter optimization approaches have already been proposed, but a software package for parameter optimization which is free of intricate experimental labeling steps, fast and widely applicable is still missing.ResultsWe implemented the software package IPO (‘Isotopologue Parameter Optimization’) which is fast and free of labeling steps, and applicable to data from different kinds of samples and data from different methods of liquid chromatography - high resolution mass spectrometry and data from different instruments.IPO optimizes XCMS peak picking parameters by using natural, stable 13C isotopic peaks to calculate a peak picking score. Retention time correction is optimized by minimizing relative retention time differences within peak groups. Grouping parameters are optimized by maximizing the number of peak groups that show one peak from each injection of a pooled sample. The different parameter settings are achieved by design of experiments, and the resulting scores are evaluated using response surface models. IPO was tested on three different data sets, each consisting of a training set and test set. IPO resulted in an increase of reliable groups (146% - 361%), a decrease of non-reliable groups (3% - 8%) and a decrease of the retention time deviation to one third.ConclusionsIPO was successfully applied to data derived from liquid chromatography coupled to high resolution mass spectrometry from three studies with different sample types and different chromatographic methods and devices. We were also able to show the potential of IPO to increase the reliability of metabolomics data.The source code is implemented in R, tested on Linux and Windows and it is freely available for download at https://github.com/glibiseller/IPO. The training sets and test sets can be downloaded from https://health.joanneum.at/IPO.

Publikation

Nettling, M.; Treutler, H.; Grau, J.; Keilwagen, J.; Posch, S.; Grosse, I.; DiffLogo: a comparative visualization of sequence motifs BMC Bioinformatics 16 387 (2015) DOI: 10.1186/s12859-015-0767-x
  • Abstract
  • BibText
  • RIS

BackgroundFor three decades, sequence logos are the de facto standard for the visualization of sequence motifs in biology and bioinformatics. Reasons for this success story are their simplicity and clarity. The number of inferred and published motifs grows with the number of data sets and motif extraction algorithms. Hence, it becomes more and more important to perceive differences between motifs. However, motif differences are hard to detect from individual sequence logos in case of multiple motifs for one transcription factor, highly similar binding motifs of different transcription factors, or multiple motifs for one protein domain.ResultsHere, we present DiffLogo, a freely available, extensible, and user-friendly R package for visualizing motif differences. DiffLogo is capable of showing differences between DNA motifs as well as protein motifs in a pair-wise manner resulting in publication-ready figures. In case of more than two motifs, DiffLogo is capable of visualizing pair-wise differences in a tabular form. Here, the motifs are ordered by similarity, and the difference logos are colored for clarity. We demonstrate the benefit of DiffLogo on CTCF motifs from different human cell lines, on E-box motifs of three basic helix-loop-helix transcription factors as examples for comparison of DNA motifs, and on F-box domains from three different families as example for comparison of protein motifs.ConclusionsDiffLogo provides an intuitive visualization of motif differences. It enables the illustration and investigation of differences between highly similar motifs such as binding patterns of transcription factors for different cell types, treatments, and algorithmic approaches.

Publikation

Gonzalez-Beltran, A.; Neumann, S.; Maguire, E.; Sansone, S.-A.; Rocca-Serra, P.; The Risa R/Bioconductor package: integrative data analysis from experimental metadata and back again BMC Bioinformatics 15 (Suppl 1) S11 (2014) DOI: 10.1186/1471-2105-15-S1-S11
  • Abstract
  • BibText
  • RIS

BackgroundThe ISA-Tab format and software suite have been developed to break the silo effect induced by technology-specific formats for a variety of data types and to better support experimental metadata tracking. Experimentalists seldom use a single technique to monitor biological signals. Providing a multi-purpose, pragmatic and accessible format that abstracts away common constructs for describing I nvestigations, S tudies and A ssays, ISA is increasingly popular. To attract further interest towards the format and extend support to ensure reproducible research and reusable data, we present the Risa package, which delivers a central component to support the ISA format by enabling effortless integration with R, the popular, open source data crunching environment.ResultsThe Risa package bridges the gap between the metadata collection and curation in an ISA-compliant way and the data analysis using the widely used statistical computing environment R. The package offers functionality for: i) parsing ISA-Tab datasets into R objects, ii) augmenting annotation with extra metadata not explicitly stated in the ISA syntax; iii) interfacing with domain specific R packages iv) suggesting potentially useful R packages available in Bioconductor for subsequent processing of the experimental data described in the ISA format; and finally v) saving back to ISA-Tab files augmented with analysis specific metadata from R. We demonstrate these features by presenting use cases for mass spectrometry data and DNA microarray data.ConclusionsThe Risa package is open source (with LGPL license) and freely available through Bioconductor. By making Risa available, we aim to facilitate the task of processing experimental data, encouraging a uniform representation of experimental information and results while delivering tools for ensuring traceability and provenance tracking.Software availabilityThe Risa package is available since Bioconductor 2.11 (version 1.0.0) and version 1.2.1 appeared in Bioconductor 2.12, both along with documentation and examples. The latest version of the code is at the development branch in Bioconductor and can also be accessed from GitHub https://github.com/ISA-tools/Risa, where the issue tracker allows users to report bugs or feature requests.

Publikation

Wolf, S.; Schmidt, S.; Müller-Hannemann, M.; Neumann, S.; In silico fragmentation for computer assisted identification of metabolite mass spectra BMC Bioinformatics 11 148 (2010) DOI: 10.1186/1471-2105-11-148
  • Abstract
  • BibText
  • RIS

BackgroundMass spectrometry has become the analytical method of choice in metabolomics research. The identification of unknown compounds is the main bottleneck. In addition to the precursor mass, tandem MS spectra carry informative fragment peaks, but the coverage of spectral libraries of measured reference compounds are far from covering the complete chemical space. Compound libraries such as PubChem or KEGG describe a larger number of compounds, which can be used to compare their in silico fragmentation with spectra of unknown metabolites.ResultsWe created the MetFrag suite to obtain a candidate list from compound libraries based on the precursor mass, subsequently ranked by the agreement between measured and in silico fragments. In the evaluation MetFrag was able to rank most of the correct compounds within the top 3 candidates returned by an exact mass query in KEGG. Compared to a previously published study, MetFrag obtained better results than the commercial MassFrontier software. Especially for large compound libraries, the candidates with a good score show a high structural similarity or just different stereochemistry, a subsequent clustering based on chemical distances reduces this redundancy. The in silico fragmentation requires less than a second to process a molecule, and MetFrag performs a search in KEGG or PubChem on average within 30 to 300 seconds, respectively, on an average desktop PC.ConclusionsWe presented a method that is able to identify small molecules from tandem MS measurements, even without spectral reference data or a large set of fragmentation rules. With today's massive general purpose compound libraries we obtain dozens of very similar candidates, which still allows a confident estimate of the correct compound class. Our tool MetFrag improves the identification of unknown substances from tandem MS spectra and delivers better results than comparable commercial software. MetFrag is available through a web application, web services and as java library. The web frontend allows the end-user to analyse single spectra and browse the results, whereas the web service and console application are aimed to perform batch searches and evaluation.

Publikation

Tautenhahn, R.; Böttcher, C.; Neumann, S.; Highly sensitive feature detection for high resolution LC/MS BMC Bioinformatics 9 504 (2008) DOI: 10.1186/1471-2105-9-504
  • Abstract
  • BibText
  • RIS

BackgroundLiquid chromatography coupled to mass spectrometry (LC/MS) is an important analytical technology for e.g. metabolomics experiments. Determining the boundaries, centres and intensities of the two-dimensional signals in the LC/MS raw data is called feature detection. For the subsequent analysis of complex samples such as plant extracts, which may contain hundreds of compounds, corresponding to thousands of features – a reliable feature detection is mandatory.ResultsWe developed a new feature detection algorithm centWave for high-resolution LC/MS data sets, which collects regions of interest (partial mass traces) in the raw-data, and applies continuous wavelet transformation and optionally Gauss-fitting in the chromatographic domain. We evaluated our feature detection algorithm on dilution series and mixtures of seed and leaf extracts, and estimated recall, precision and F-score of seed and leaf specific features in two experiments of different complexity.ConclusionThe new feature detection algorithm meets the requirements of current metabolomics experiments. centWave can detect close-by and partially overlapping features and has the highest overall recall and precision values compared to the other algorithms, matchedFilter (the original algorithm of XCMS) and the centroidPicker from MZmine. The centWave algorithm was integrated into the Bioconductor R-package XCMS and is available from http://www.bioconductor.org/

Publikation

Lange, E.; Tautenhahn, R.; Neumann, S.; Gröpl, C.; Critical assessment of alignment procedures for LC-MS proteomics and metabolomics measurements BMC Bioinformatics 9 375 (2008) DOI: 10.1186/1471-2105-9-375
  • Abstract
  • BibText
  • RIS

BackgroundLiquid chromatography coupled to mass spectrometry (LC-MS) has become a prominent tool for the analysis of complex proteomics and metabolomics samples. In many applications multiple LC-MS measurements need to be compared, e. g. to improve reliability or to combine results from different samples in a statistical comparative analysis. As in all physical experiments, LC-MS data are affected by uncertainties, and variability of retention time is encountered in all data sets. It is therefore necessary to estimate and correct the underlying distortions of the retention time axis to search for corresponding compounds in different samples. To this end, a variety of so-called LC-MS map alignment algorithms have been developed during the last four years. Most of these approaches are well documented, but they are usually evaluated on very specific samples only. So far, no publication has been assessing different alignment algorithms using a standard LC-MS sample along with commonly used quality criteria.ResultsWe propose two LC-MS proteomics as well as two LC-MS metabolomics data sets that represent typical alignment scenarios. Furthermore, we introduce a new quality measure for the evaluation of LC-MS alignment algorithms. Using the four data sets to compare six freely available alignment algorithms proposed for the alignment of metabolomics and proteomics LC-MS measurements, we found significant differences with respect to alignment quality, running time, and usability in general.ConclusionThe multitude of available alignment methods necessitates the generation of standard data sets and quality measures that allow users as well as developers to benchmark and compare their map alignment tools on a fair basis. Our study represents a first step in this direction. Currently, the installation and evaluation of the "correct" parameter settings can be quite a time-consuming task, and the success of a particular method is still highly dependent on the experience of the user. Therefore, we propose to continue and extend this type of study to a community-wide competition. All data as well as our evaluation scripts are available at http://msbi.ipb-halle.de/msbi/caap.

  • 1
  • 2

Drucken

  • Startseite
  • Aktuelles
  • Vorträge
  • Publikationen
  • Öffentliche Ausschreibungen
  • IPB Remote & Mail
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Die Leibniz-Gemeinschaft
  • Wege zu einer pflanzenbasierten Wirtschaft
  • Martin-Luther Universität Halle
  • Erfolgsfaktor Familie
  • TOTAL E-QUALITY
  • Forschung
    • Leitbild und Forschungsprofil

    • Molekulare Signalverarbeitung

    • Natur- und Wirkstoffchemie

    • Biochemie pflanzlicher Interaktionen

    • Stoffwechsel- und Zellbiologie

    • Unabhängige Nachwuchsgruppen

    • Program Center MetaCom

    • Publikationen

    • Gute Wissenschaftliche Praxis

    • Forschungsförderung

    • Netzwerke und Verbundprojekte

    • Symposien und Kolloquien

    • Alumni-Forschungsgruppen

  • Infrastruktur
    • Datenbanken und Tools

    • Technische Ausstattung

    • Zellbiologie-Plattform

    • Gewächshäuser und Phytokammern

    • Bibliothek

  • Institut
    • Organigramm

    • Leitung und Gremien

    • Administration und Infrastruktur

    • Energiemanagement

    • Vielfalt, Familie, Chancengleichheit

    • Öffentliche Ausschreibungen

    • Patente und Lizenzen

    • IPB Welcoming Culture

    • Gästehäuser

    • IPB-Lageplan

    • Geschichte des Instituts

    • Alumni

  • Karriere
    • Datenschutzhinweise für Bewerber

    • Doktorandenprogramm

    • Postdoktoranden

    • Berufsausbildung

  • Öffentlichkeit
    • Aktuelles

    • Newsticker Wissenschaft

    • Pressemitteilungen

    • IPB Pressespiegel

    • LANGE NACHT, DIE WISSEN SCHAFFT: PROGRAMM

    • IPB Newsletter

    • IPB Geschichtsbuch

    • Scientific Reports / Research Highlights

    • Veranstaltungen

    • Cover Art

    • Citizen Science: Pilzberatung

  • IPB Remote & Mail