- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
Genetic and biochemical dissection of signaling pathways regulating plant pathogen defense has revealed remarkable similarities with the innate immune system of mammals and Drosophila. Numerous plant proteins resembling eukaryotic receptors have been implicated in the perception of pathogen-derived signal molecules. Receptor-mediated changes in levels of free calcium in the cytoplasm and production of reactive oxygen species and nitric oxide constitute early events generally observed in plant–pathogen interactions. Positive and negative regulation of plant pathogen defense responses has been attributed to mitogen-activated protein kinase cascades. In addition, salicylic acid, jasmonic acid and ethylene are components of signaling networks that provide the molecular basis for specificity of plant defense responses. This article reviews recent advances in our understanding of early signaling events involved in the establishment of plant disease resistance.
Publikation
Oilseed germination is characterized by the mobilization of storage lipids as a carbon source for the germinating seedling. In spite of the importance of lipid mobilization, its mechanism is only partially understood. Recent data suggest that a novel degradation mechanism is initiated by a 13-lipoxygenase during germination, using esterified fatty acids specifically as substrates. This 13-lipoxygenase reaction leads to a transient accumulation of ester lipid hydroperoxides in the storage lipids, and the corresponding oxygenated fatty acid moieties are preferentially removed by specific lipases. The free hydroperoxy fatty acids are subsequently reduced to their hydroxy derivatives, which might in turn undergo β-oxidation.