- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
The unsaturation of phospholipids influences the function of membranes. In Arabidopsis thaliana, the oleoyl Δ12‐desaturase FAD2 converts oleic (18:1Δ9) to linoleic acid (18:2Δ9,12) and influences phospholipid unsaturation in different cellular membranes. Despite its importance, the precise localization of Arabidopsis FAD2 has not been unambiguously described. As FAD2 is thought to modify phospholipid‐associated fatty acids at the endoplasmic reticulum (ER), from where unsaturates are distributed to other cellular sites, we hypothesized that FAD2 locates to ER subdomains enabling trafficking of lipid intermediates through the secretory pathway. Fluorescent FAD2 fusions used to test this hypothesis were first assessed for functionality by heterologous expression in yeast (Saccharomyces cerevisiae), and in planta by Arabidopsis fad2 mutant rescue upon ectopic expression from an intrinsic FAD2 promoter fragment. Light sheet fluorescence, laser scanning confocal or spinning disc microscopy of roots, leaves, or mesophyll protoplasts showed the functional fluorescence‐tagged FAD2 variants in flattened donut‐shaped structures of ~0.5–1 μm diameter, in a pattern not resembling mere ER association. High‐resolution imaging of coexpressed organellar markers showed fluorescence‐tagged FAD2 in a ring‐shaped pattern surrounding ER‐proximal Golgi particles, colocalizing with pre‐cis‐Golgi markers. This localization required the unusual C‐terminal retention signal of FAD2, and deletion or substitutions in this protein region resulted in relaxed distribution and diffuse association with the ER. The distinct association of FAD2 with pre‐cis‐Golgi stacks in Arabidopsis root and leaf tissue is consistent with a contribution of FAD2 to membrane lipid homeostasis through the secretory pathway, as verified by an increased plasma membrane liquid phase order in the fad2 mutant.
Publikation
Wind, rain, herbivores, obstacles, neighbouring plants, etc. provide important mechanical cues to steerplant growth and survival. Mechanostimulation to stimulate yield and stress resistance of crops is of signifi-cant research interest, yet a molecular understanding of transcriptional responses to touch is largely absentin cereals. To address this, we performed whole-genome transcriptomics following mechanostimulation ofwheat, barley, and the recent genome-sequenced oat. The largest transcriptome changes occurred 25 minafter touching, with most of the genes being upregulated. While most genes returned to basal expressionlevel by 1–2 h in oat, many genes retained high expression even 4 h post-treatment in barley and wheat.Functional categories such as transcription factors, kinases, phytohormones, and Ca2+regulation wereaffected. In addition, cell wall-related genes involved in (hemi)cellulose, lignin, suberin, and callose biosyn-thesis were touch-responsive, providing molecular insight into mechanically induced changes in cell wallcomposition. Furthermore, several cereal-specific transcriptomic footprints were identified that were notobserved in Arabidopsis. In oat and barley, we found evidence for systemic spreading of touch-induced sig-nalling. Finally, we provide evidence that both the jasmonic acid-dependent and the jasmonic acid-independent pathways underlie touch-signalling in cereals, providing a detailed framework and markergenes for further study of (a)biotic stress responses in cereals.
Publikation
Most terrestrial plants form arbuscular mycorrhiza (AM), mutualistic associations with soil fungi of the order Glomeromycota. The obligate biotrophic fungi trade mineral nutrients, mainly phosphate (Pi), for carbohydrates from the plants. Under conditions of high exogenous phosphate supply, when the plant can meet its own P requirements without the fungus, AM are suppressed, an effect which could be interpreted as an active strategy of the plant to limit carbohydrate consumption of the fungus by inhibiting its proliferation in the roots. However, the mechanisms involved in fungal inhibition are poorly understood. Here, we employ a transcriptomic approach to get insight into potential shifts in metabolic activity and symbiotic signalling, and in the defence status of plants exposed to high Pi levels. We show that in mycorrhizal roots of petunia, a similar set of symbiosis‐related genes is expressed as in mycorrhizal roots of Medicago, Lotus and rice. Pi acts systemically to repress symbiotic gene expression and AM colonization in the root. In established mycorrhizal roots, Pi repressed symbiotic gene expression rapidly, whereas the inhibition of colonization followed with a lag of more than a week. Taken together, these results suggest that Pi acts by repressing essential symbiotic genes, in particular genes encoding enzymes of carotenoid and strigolactone biosynthesis, and symbiosis‐associated phosphate transporters. The role of these effects in the suppression of symbiosis under high Pi conditions is discussed.
Publikation
Attempted infection of plants by pathogens elicits a complex defensive response. In many non‐host and incompatible host interactions it includes the induction of defence‐associated genes and a form of localized cell death (LCD), purportedly designed to restrict pathogen advance, collectively known as the hypersensitive response (HR). It is preceded by an oxidative burst, generating reactive oxygen species (ROS) that are proposed to cue subsequent deployment of the HR, although neither the origin nor the precise role played by ROS in the execution of this response are completely understood. We used tobacco plants expressing cyanobacterial flavodoxin to address these questions. Flavodoxin is an electron shuttle present in prokaryotes and algae that, when expressed in chloroplasts, specifically prevents ROS formation in plastids during abiotic stress episodes. Infiltration of tobacco wild‐type leaves with high titres of Xanthomonas campestris pv. vesicatoria (Xcv ), a non‐host pathogen, resulted in ROS accumulation in chloroplasts, followed by the appearance of localized lesions typical of the HR. In contrast, chloroplast ROS build‐up and LCD were significantly reduced in Xcv ‐inoculated plants expressing plastid‐targeted flavodoxin. Metabolic routes normally inhibited by pathogens were protected in the transformants, whereas other aspects of the HR, including the induction of defence‐associated genes and synthesis of salicylic and jasmonic acid, proceeded as in inoculated wild‐type plants. Therefore, ROS generated in chloroplasts during this non‐host interaction are essential for the progress of LCD, but do not contribute to the induction of pathogenesis‐related genes or other signalling components of the response.
Publikation
The first step of the plastidial methylerythritol phosphate (MEP) pathway is catalyzed by two isoforms of 1‐deoxy‐d‐ xylulose 5‐phosphate synthase (DXS1 and DXS2). In Medicago truncatula , MtDXS1 and MtDXS2 genes exhibit completely different expression patterns. Most prominently, colonization by arbuscular mycorrhizal (AM) fungi induces the accumulation of certain apocarotenoids (cyclohexenone and mycorradicin derivatives) correlated with the expression of MtDXS2 but not of MtDXS1. To prove a distinct function of DXS2, a selective RNAi approach on MtDXS2 expression was performed in transgenic hairy roots of M. truncatula. Repression of MtDXS2 consistently led to reduced transcript levels in mycorrhizal roots, and to a concomitant reduction of AM‐induced apocarotenoid accumulation. The transcript levels of MtDXS1 remained unaltered in RNAi plants, and no phenotypical changes in non‐AM plants were observed. Late stages of the AM symbiosis were adversely affected, but only upon strong repression with residual MtDXS2‐1 transcript levels remaining below approximately 10%. This condition resulted in a strong decrease in the transcript levels of MtPT4 , an AM‐specific plant phosphate transporter gene, and in a multitude of other AM‐induced plant marker genes, as shown by transcriptome analysis. This was accompanied by an increased proportion of degenerating and dead arbuscules at the expense of mature ones. The data reveal a requirement for DXS2‐dependent MEP pathway‐based isoprenoid products to sustain mycorrhizal functionality at later stages of the symbiosis. They further validate the concept of a distinct role for DXS2 in secondary metabolism, and offer a novel tool to selectively manipulate the levels of secondary isoprenoids by targeting their precursor supply.
Publikation
Cation‐ and S ‐adenosyl‐l ‐methionine (AdoMet)‐dependent plant natural product methyltransferases are referred to as CCoAOMTs because of their preferred substrate, caffeoyl coenzyme A (CCoA). The enzymes are encoded by a small family of genes, some of which with a proven role in lignin monomer biosynthesis. In Arabidopsis thaliana individual members of this gene family are temporally and spatially regulated. The gene At1g67990 is specifically expressed in flower buds, and is not detected in any other organ, such as roots, leaves or stems. Several lines of evidence indicate that the At1g67990 transcript is located in the flower buds, whereas the corresponding CCoAOMT‐like protein, termed AtTSM1, is located exclusively in the tapetum of developing stamen. Flowers of At1g67990 RNAi‐suppressed plants are characterized by a distinct flower chemotype with severely reduced levels of the N ′,N ′′‐ bis‐(5‐hydroxyferuloyl)‐N ′′′‐sinapoylspermidine compensated for by N1 ,N5 ,N10 ‐tris‐(5‐hydroxyferuloyl)spermidine derivative, which is characterized by the lack of a single methyl group in the sinapoyl moiety. This severe change is consistent with the observed product profile of AtTSM1 for aromatic phenylpropanoids. Heterologous expression of the recombinant protein shows the highest activity towards a series of caffeic acid esters, but 5‐hydroxyferuloyl spermidine conjugates are also accepted substrates. The in vitro substrate specificity and the in vivo RNAi‐mediated suppression data of the corresponding gene suggest a role of this cation‐dependent CCoAOMT‐like protein in the stamen/pollen development of A. thaliana .
Publikation
The effect of constitutive invertase overexpression on the arbuscular mycorrhiza (AM) is shown. The analysis of the enhanced potential for sucrose cleavage was performed with a heterozygous line of Nicotiana tabacum 35S::cwINV expressing a chimeric gene encoding apoplast‐located yeast‐derived invertase with the CaMV35S promoter. Despite the 35S promoter, roots of the transgenic plants showed no or only minor effects on invertase activity whereas the activity in leaves was increased at different levels. Plants with strongly elevated leaf invertase activity, which exhibited a strong accumulation of hexoses in source leaves, showed pronounced phenotypical effects like stunted growth and chlorosis, and an undersupply of the root with carbon. Moreover, transcripts of PR (pathogenesis related) genes accumulated in the leaves. In these plants, mycorrhization was reduced. Surprisingly, plants with slightly increased leaf invertase activity showed a stimulation of mycorrhization, particularly 3 weeks after inoculation. Compared with wild‐type, a higher degree of mycorrhization accompanied by a higher density of all fungal structures and a higher level of Glomus intraradices ‐specific rRNA was detected. Those transgenic plants showed no accumulation of hexoses in the source leaves, minor phenotypical effects and no increased PR gene transcript accumulation. The roots had even lower levels of phenolic compounds (chlorogenic acid and scopolin), amines (such as tyramine, dopamine, octopamine and nicotine) and some amino acids (including 5‐amino‐valeric acid and 4‐amino‐butyric acid), as well as an increased abscisic acid content compared with wild‐type. Minor metabolic changes were found in the leaves of these plants. The changes in metabolism and defense status of the plant and their putative role in the formation of an AM symbiosis are discussed.
Publikation
The allene oxide cyclase (AOC)‐catalyzed step in jasmonate (JA) biosynthesis is important in the wound response of tomato. As shown by treatments with systemin and its inactive analog, and by analysis of 35S::prosysteminsense and 35S::prosysteminantisense plants, the AOC seems to be activated by systemin (and JA) leading to elevated formation of JA. Data are presented on the local wound response following activation of AOC and generation of JA, both in vascular bundles. The tissue‐specific occurrence of AOC protein and generation of JA is kept upon wounding or other stresses, but is compromised in 35S::AOCsense plants, whereas 35S::AOCantisense plants exhibited residual AOC expression, a less than 10% rise in JA, and no detectable expression of wound response genes. The (i) activation of systemin‐dependent AOC and JA biosynthesis occurring only upon substrate generation, (ii) the tissue‐specific occurrence of AOC in vascular bundles, where the prosystemin gene is expressed, and (iii) the tissue‐specific generation of JA suggest an amplification in the wound response of tomato leaves allowing local and rapid defense responses.
Publikation
A crucial step in the biosynthesis of jasmonic acid (JA) is the formation of its correct stereoisomeric precursor, cis (+)12‐oxophytodienoic acid (OPDA). This step is catalysed by allene oxide cyclase (AOC), which has been recently cloned from tomato . In stems, young leaves and young flowers, AOC mRNA accumulates to a low level , contrasting with a high accumulation in flower buds, flower stalks and roots. The high levels of AOC mRNA and AOC protein in distinct flower organs correlate with high AOC activity, and with elevated levels of JA, OPDA and JA isoleucine conjugate. These compounds accumulate in flowers to levels of about 20 nmol g−1 fresh weight, which is two orders of magnitude higher than in leaves. In pistils, the level of OPDA is much higher than that of JA, whereas in flower stalks, the level of JA exceeds that of OPDA. In other flower tissues, the ratios among JA, OPDA and JA isoleucine conjugate differ remarkably, suggesting a tissue‐specific oxylipin signature. Immunocytochemical analysis revealed the specific occurrence of the AOC protein in ovules, the transmission tissue of the style and in vascular bundles of receptacles, flower stalks, stems, petioles and roots. Based on the tissue‐specific AOC expression and formation of JA, OPDA and JA amino acid conjugates, a possible role for these compounds in flower development is discussed in terms of their effect on sink–source relationships and plant defence reactions. Furthermore, the AOC expression in vascular bundles might play a role in the systemin‐mediated wound response of tomato.
Publikation
Allene oxide synthase (AOS) is the first enzyme in the lipoxygenase (LOX) pathway which leads to formation of jasmonic acid (JA). Two full‐length cDNAs of AOS designated as AOS1 and AOS2, respectively, were isolated from barley (H. vulgare cv. Salome) leaves, which represent the first AOS clones from a monocotyledonous species. For AOS1, the open reading frame encompasses 1461 bp encoding a polypeptide of 487 amino acids with calculated molecular mass of 53.4 kDa and an isoelectric point of 9.3, whereas the corresponding data of AOS2 are 1443 bp, 480 amino acids, 52.7 kDa and 7.9. Southern blot analysis revealed at least two genes. Despite the lack of a putative chloroplast signal peptide in both sequences, the protein co‐purified with chloroplasts and was localized within chloroplasts by immunocytochemical analysis. The barley AOSs, expressed in bacteria as active enzymes, catalyze the dehydration of LOX‐derived 9‐ as well as 13‐hydroperoxides of polyenoic fatty acids to the unstable allene oxides. In leaves, AOS mRNA accumulated upon treatment with jasmonates, octadecanoids and metabolizable carbohydrates, but not upon floating on abscisic acid, NaCl, Na‐salicylate or infection with powdery mildew. In developing seedlings, AOS mRNA strongly accumulated in the scutellar nodule, but less in the leaf base. Both tissues exhibited elevated JA levels. In situ hybridizations revealed the preferential occurrence of AOS mRNA in parenchymatic cells surrounding the vascular bundles of the scutellar nodule and in the young convoluted leaves as well as within the first internode. The properties of both barley AOSs, their up‐regulation of their mRNAs and their tissue specific expression suggest a role during seedling development and jasmonate biosynthesis.