- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
Exogenous jasmonate treatment of Nicotiana attenuata Torr. ex Wats. plants elicits durable resistance against herbivores and attack from its specialist herbivore, Manduca sexta, results in an amplification of the transient wound-induced increase in endogenous jasmonic acid levels (JA). To understand whether this “JA burst” is under transcriptional control, we cloned allene oxide synthase (AOS; EC 4.2.1.92), the enzyme that catalyzes the dehydration of 13(S)-hydroperoxy octadecatrienoic acid to an allene oxide, the first specific reaction in JA biosynthesis. An AOS cDNA coding for a 520 aa protein (58.6 kDa) with an isoelectric point of 8.74 was overexpressed in bacteria and determined to be a functional AOS. Southern blot analysis indicated the presence of more than one gene and AOS transcripts were detected in all organs, with the highest levels in stems, stem leaves and flowers. Attack by M. sexta larvae resulted in a sustained JA burst producing an endogenous JA amount 9-fold above control levels and 3-fold above maximum wound-induced levels, a response which could be mimicked by the addition of Manduca oral secretion and regurgitant to puncture wounds. M. sexta attack, wounding and regurgitant treatment transiently increased AOS transcript in the wounded leaf, but increases were not proportional to the JA response. Moreover, transcript accumulation lagged behind JA accumulation. Systemic wound-induced increases in AOS transcript, AOS activity or JA accumulation could not be detected. We conclude that increase in AOS transcript does not contribute to the initial increase in endogenous JA, but may contribute to sustaining the JA burst.The accumulation of allene oxide synthase transcripts after mechanical wounding, treatment with larval regurgitant, and herbivore attack are compared and correlated with the respective jasmonic acid accumulation.
Publikation
In barley leaves 13-lipoxygenases (LOXs) are induced by salicylate and jasmonate. Here, we analyse by metabolic profiling the accumulation of oxylipins upon sorbitol treatment. Although 13-LOX-derived products are formed and specifically directed into the reductase branch of the LOX pathway, accumulation is much later than in the cases of salicylate and jasmonate treatment. In addition, under these conditions only the accumulation of jasmonates as additional products of the LOX pathway has been found.
Publikation
An abundant catalytically active β‐amylase (EC 3.2.1.2) was isolated from resting rhizomes of hedge bindweed (Calystegia sepium ). Biochemical analysis of the purified protein, molecular modeling, and cloning of the corresponding gene indicated that this enzyme resembles previously characterized plant β‐amylases with regard to its amino‐acid sequence, molecular structure and catalytic activities. Immunolocalization demonstrated that the β‐amylase is exclusively located in the cytoplasm. It is suggested that the hedge bindweed rhizome β‐amylase is a cytoplasmic vegetative storage protein.
Publikation
Crude aqueous extracts from Arabidopsis leaves were subjected to chromatographic separations, after which the different fractions were monitored for antimicrobial activity using the fungus Neurospora crassa as a test organism. Two major fractions were obtained that appeared to have the same abundance in leaves from untreated plants versus leaves from plants challenge inoculated with the fungusAlternaria brassicicola. One of both major antimicrobial fractions was purified to homogeneity and identified by 1H nuclear magnetic resonance, gas chromatography/electron impact mass spectrometry, and gas chromatography/chemical ionization mass spectrometry as 4-methylsulphinylbutyl isothiocyanate (ITC). This compound has previously been described as a product of myrosinase-mediated breakdown of glucoraphanin, the predominant glucosinolate in Arabidopsis leaves. 4-Methylsulphinylbutyl ITC was found to be inhibitory to a wide range of fungi and bacteria, producing 50% growth inhibition in vitro at concentrations of 28 μm for the most sensitive organism tested (Pseudomonas syringae). A previously identified glucosinolate biosynthesis mutant, gsm1-1, was found to be largely deficient in either of the two major antimicrobial compounds, including 4-methylsulphinylbutyl ITC. The resistance ofgsm1-1 was compared with that of wild-type plants after challenge with the fungi A. brassicicola,Plectosphaerella cucumerina, Botrytis cinerea, Fusarium oxysporum, orPeronospora parasitica, or the bacteria Erwinia carotovora or P. syringae. Of the tested pathogens, only F. oxysporum was found to be significantly more aggressive on gsm1-1 than on wild-type plants. Taken together, our data suggest that glucosinolate-derived antimicrobial ITCs can play a role in the protection of Arabidopsis against particular pathogens.
Publikation
When inorganic phosphate is limiting, Arabidopsis has the facultative ability to metabolize exogenous nucleic acid substrates, which we utilized previously to identify insensitive phosphate starvation response mutants in a conditional genetic screen. In this study, we examined the effect of the phosphate analog, phosphite (Phi), on molecular and morphological responses to phosphate starvation. Phi significantly inhibited plant growth on phosphate-sufficient (2 mm) and nucleic acid-containing (2 mmphosphorus) media at concentrations higher than 2.5 mm. However, with respect to suppressing typical responses to phosphate limitation, Phi effects were very similar to those of phosphate. Phosphate starvation responses, which we examined and found to be almost identically affected by both anions, included changes in: (a) the root-to-shoot ratio; (b) root hair formation; (c) anthocyanin accumulation; (d) the activities of phosphate starvation-inducible nucleolytic enzymes, including ribonuclease, phosphodiesterase, and acid phosphatase; and (e) steady-state mRNA levels of phosphate starvation-inducible genes. It is important that induction of primary auxin response genes by indole-3-acetic acid in the presence of growth-inhibitory Phi concentrations suggests that Phi selectively inhibits phosphate starvation responses. Thus, the use of Phi may allow further dissection of phosphate signaling by genetic selection for constitutive phosphate starvation response mutants on media containing organophosphates as the only source of phosphorus.
Publikation
In elicitor-treated potato cells, 9-lipoxygenase-derived oxylipins accumulate with the divinyl ether colneleic acid as the major metabolite. Here, the identification of a potato cDNA is described, whose predicted amino acid sequence corresponds to divinyl ether synthases, belonging to the recently identified new P450 subfamily CYP74D. The recombinant protein was expressed in Escherichia coli and shown to metabolize 9-hydroperoxy linoleic acid to colneleic acid at pH 6.5. This fatty acid derivative has been implicated in functioning as a plant antimicrobial compound. RNA blot analyses revealed accumulation of divinyl ether synthase transcripts both upon infiltration of potato leaves with Pseudomonas syringae and after infection with Phytophthora infestans.
Publikation
Pflanzen und bestimmte Pilze haben im Laufe ihrer Entwicklungsgeschichte „gelernt”︁, in einer engen Assoziation im Boden, der Mykorrhiza, eine äußerst erfolgreiche Symbiose miteinander einzugehen. Arbuskuläre Mykorrhizapilze helfen Pflanzen sich auf nährstoffarmen Böden ausreichend mit Wasser, Nährsalzen und Spurenelementen zu versorgen und fördern entscheidend Diversität und Produktivität von Pflanzengesellschaften. Darüber hinaus zeigen mykorrhizierte Pflanzen eine erhöhte Widerstandsfähigkeit gegen Pathogenbefall. Im Gegenzug „bezahlt”︁ die Pflanze den Pilz für diesen Gewinn mit Kohlenhydraten in Form einfacher Zucker (Glucose, Fructose). Durch manche Erfolge in der Erforschung der Mykorrhiza auf Metaboliten‐ und Genebene beginnen wir allmählich zu erahnen, wie komplex die molekularen Interaktionen dieser Symbiose sind. Es ist zu erwarten, dass das steigende Interesse an der Mykorrhizaforschung zu neuen Einsichten in die Strategien von Pflanzen und Pilzen in der Entwicklung mutualistisch‐symbiontischer Assoziationen führen wird.
Publikation
Bisher war die Funktion der Polyphenoloxidasen (PPO) unklar. Inzwischen konnte aber gezeigt werden, dass eine Tyrosinase an der Betacyan‐Biosynthese des Portulakröschens (siehe Bild) und der Roten Rübe sowie eine Chalkon‐spezifische PPO an der Auronbildung in gelben Löwenmaulblüten beteiligt ist.
Publikation
Enzymes in search of a function, for polyphenol oxidases (PPOs), described as such, this situation has changed recently. A tyrosinase is involved in betacyanin biosynthesis in common portulaca (see picture) and red beet, and a chalcone‐specific PPO is responsible for the formation of aurones in yellow snapdragon flowers.
Publikation
R,R-Bis[(3-benzyloxazolan-4-yl)-methyl] disulfide, C22H28N2O2S2, is a chiral disulfide which is a highly effective catalyst for the enantioselective addition of diethylzinc to aldehydes, including aliphatic ones. The molecule has crystallographic twofold rotation symmetry.