- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
In-vivo imaging of transgenic tobacco plants (Nicotiana tobacum L.) expressing firefly luciferase under the control of the Arabidopsis phenylalanine ammonia-lyase 1 (PAL1)-promoter showed that luciferase-catalyzed light emission began immediately after the substrate luciferin was sprayed onto the leaves and reached a plateau phase after approximately 60 min. This luminescence could easily be detected for up to 24 h after luciferin application although the light intensity declined continuously during this period. A strong and rapid increase in light emission was observed within the first minutes after wounding of luciferin-sprayed leaves. However, these data did not correlate with luciferase activity analysed by an in-vitro enzyme assay. In addition, Arabidopsis plants expressing luciferase under the control of the constitutive 35S-promoter showed similar wound-induced light emission. In experiments in which only parts of the leaves were sprayed with luciferin solutions, it was shown that increased uptake of luciferin at the wound site and its transport through vascular tissue were the main reasons for the rapid burst of light produced by preformed luciferase activity. These data demonstrate that there are barriers that restrict luciferin entry into adult plants, and that luciferin availability can be a limiting factor in non-invasive luciferase assays.
Publikation
Plants are exposed to a wide range of toxic and bioactive low-molecular-weight molecules from both exogenous and endogenous sources. Glycosylation is one of the primary sedative mechanisms that plants utilise in order to maintain metabolic homeostasis. Recently, a range of glycosyltransferases has been characterized in detail with regard to substrate specificity. The next step in increasing our understanding of the biology of glycosylation will require information regarding the exact role of individual glycosyltransferases in planta, as well as an insight into their potential involvement in metabolon-complexes. Hopefully, this will answer how a large number of glycosyltransferases with broad, rather than narrow, substrate specificity can be constrained in order to avoid interfering with other pathways of primary and secondary metabolism. These and other topics are discussed.
Publikation
In the present paper we analyzed plastid populations labeled by the green fluorescent protein in non-mycorrhizal and mycorrhizal roots of tobacco (Nicotiana tabacum L.). We show by confocal laser scanning microscopy (i) a dramatic increase in these plastids in mycorrhizal roots and (ii) the formation of dense plastid networks covering the symbiotic interface of the arbuscular mycorrhiza, the arbuscule. These cytological observations point to an important role of root cortical cell plastids in the functioning of arbuscular mycorrhizal symbiosis.
Publikation
Transition metals such as copper are essential for many physiological processes yet can be toxic at elevated levels. Other metals (e.g. lead) are nonessential and potentially highly toxic. Plants – like all other organisms – possess homeostatic mechanisms to maintain the correct concentrations of essential metal ions in different cellular compartments and to minimize the damage from exposure to nonessential metal ions. A regulated network of metal transport, chelation, trafficking and sequestration activities functions to provide the uptake, distribution and detoxification of metal ions. Some of the components of this network have now been identified: a number of uptake transporters have been cloned as well as candidate transporters for the vacuolar sequestration of metals. Chelators and chaperones are known, and evidence for intracellular metal trafficking is emerging. This recent progress in the molecular understanding of plant metal homeostasis and tolerance is reviewed.