- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
This study describes the molecular characterization of the genes BnSCT1 and BnSCT2 from oilseed rape (Brassica napus) encoding the enzyme 1-O-sinapoyl-β-glucose:choline sinapoyltransferase (SCT; EC 2.3.1.91). SCT catalyzes the 1-O-β-acetal ester-dependent biosynthesis of sinapoylcholine (sinapine), the most abundant phenolic compound in seeds of B. napus. GUS fusion experiments indicated that seed specificity of BnSCT1 expression is caused by an inducible promoter confining transcription to embryo tissues and the aleurone layer. A dsRNAi construct designed to silence seed-specifically the BnSCT1 gene was effective in reducing the sinapine content of Arabidopsis seeds thus defining SCT genes as targets for molecular breeding of low sinapine cultivars of B. napus. Sequence analyses revealed that in the allotetraploid genome of B. napus the gene BnSCT1 represents the C genome homologue from the B. oleracea progenitor whereas BnSCT2 was derived from the Brassica A genome of B. rapa. The BnSCT1 and BnSCT2 loci showed colinearity with the homologous Arabidopsis SNG2 gene locus although the genomic microstructure revealed the deletion of a cluster of three genes and several coding regions in the B. napus genome.
Publikation
This study describes a systematic screen for secondary product UDP-glycosyltransferases (UGTs; EC 2.4.1) involved in seed development of oilseed rape (Brassica napus) and was aimed at identifying genes related to UGT84A9 encoding UDP-glucose:sinapate glucosyltransferase (EC 2.4.1.120), a proven target for molecular breeding approaches to reduce the content of anti-nutritive sinapate esters. By RT-PCR with primers recognizing the conserved signature motif of UGTs, 13 distinct ESTs could be generated from seed RNA. Sequence analysis allowed to assign the isolated ESTs to groups B, D, E, and L of the UGT family. In an alternative approach, two open reading frames related to UGT84A9 were cloned from the B. napus genome and designated as UGT84A10 and UGT84A11, respectively. Functional expression of UGT84A10 revealed that the encoded enzyme catalyzes the formation of 1-O-acylglucosides (β-acetal esters) with several hydroxycinnamates whereas, in our hands, the recombinant UGT84A11 did not display this enzymatic activity. Semi-quantitative RT-PCR confirmed that the majority of potential UGTs specified by the isolated ESTs is differentially expressed. A pronounced transcriptional up-regulation during seed development was evident for UGT84A9 and one EST (BnGT3) clustering in group E of UGTs. UGT84A10 was highly induced in flowers and expressed to a moderate level in late seed maturation indicating a possible involvement in seed-specific sinapate ester biosynthesis.