- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
Introduction: Plants release a large variety of metabolites via their roots to shape physico-chemical soil properties and biological processes in the rhizosphere. While hydroponic growth conditions facilitate accessibility of the root system and recovery of root exudates, the natural soil environment can alter root metabolism and exudate secretion, raising the question to what extent the quantity and composition of root exudates released in hydroponic growth systems reflect those recovered from soil-grown roots. Methods: Using a root washing method, we sampled root exudates from four field-grown cover crop species with wide taxonomic distance, namely white mustard, lacy phacelia, bristle oat, and Egyptian clover. A set of primary metabolites and secondary metabolites were analysed in a targeted and untargeted LC-MS-based approach, respectively, for comparison with exudates obtained from hydroponically cultured plants. Results and discussion: We found that hydroponically cultivated plants released a larger amount of total carbon, but that the recovery of total carbon was not indicative for the diversity of metabolites in root exudates. In the field, root exudates from phacelia and clover contained 2.4 to 3.8 times more secondary metabolites, whereas carbon exudation in hydroponics was 5- to 4-fold higher. The composition of the set of metabolites identified using the untargeted approach was much more distinct among all species and growth conditions than that of quantified primary metabolites. Among secondary metabolite classes, the presence of lipids and lipid-like molecules was highly indicative for field samples, while the release of a large amount of phenylpropanoids, organoheterocyclic compounds or benzenoids was characteristic for clover, mustard or oat, respectively, irrespective of the cultivation condition. However, at the compound level the bulk of released metabolites was specific for cultivation conditions in every species, which implies that hydroponically sampled root exudates poorly reflect the metabolic complexity of root exudates recovered from field-grown plants.
Publikation
Organotin(IV) carboxylates are a class of compounds explored as alternatives to platinum-containing chemotherapeutics due to propitious in vitro and in vivo results, and distinct mechanisms of action. In this study, triphenyltin(IV) derivatives of non-steroidal anti-inflammatory drugs (indomethacin (HIND) and flurbiprofen (HFBP)) are synthesized and characterized, namely [Ph3Sn(IND)] and [Ph3Sn(FBP)]. The crystal structure of [Ph3Sn(IND)] reveals penta-coordination of the central tin atom with almost perfect trigonal bipyramidal geometry with phenyl groups in the equatorial positions and two axially located oxygen atoms belonging to two distinct carboxylato (IND) ligands leading to formation of a coordination polymer with bridging carboxylato ligands. Employing MTT and CV probes, the antiproliferative effects of both organotin(IV) complexes, indomethacin, and flurbiprofen were evaluated on different breast carcinoma cells (BT-474, MDA-MB-468, MCF-7 and HCC1937). [Ph3Sn(IND)] and [Ph3Sn(FBP)], unlike the inactive ligand precursors, were found extremely active towards all examined cell lines, demonstrating IC50 concentrations in the range of 0.076–0.200 µM. Flow cytometry was employed to examine the mode of action showing that neither apoptotic nor autophagic mechanisms were triggered within the first 48 h of treatment. However, both tin(IV) complexes inhibited cell proliferation potentially related to the dramatic reduction in NO production, resulting from downregulation of nitric oxide synthase (iNOS) enzyme expression.
Publikation
In light of recent climate change, with its rising temperatures and precipitation changes, we are facing the need to increase the valuable crop’s tolerance against unfavorable environmental conditions. Emmer wheat is a cereal crop with high nutritional value. We investigated the possibility of improving the stress tolerance of emmer wheat by activating the synthesis of the stress hormone jasmonate by overexpressing two genes of the jasmonate biosynthetic pathway from Arabidopsis thaliana, ALLENE OXIDE SYNTHASE (AtAOS) and OXOPHYTODIENOATE REDUCTASE 3 (AtOPR3). Analyses of jasmonates in intact and mechanically wounded leaves of non-transgenic and transgenic plants showed that the overexpression of each of the two genes resulted in increased wounding-induced levels of jasmonic acid and jasmonate-isoleucine. Against all expectations, the overexpression of AtAOS, encoding a chloroplast-localized enzyme, does not lead to an increased level of the chloroplast-formed 12-oxo-phytodienoic acid (OPDA), suggesting an effective conversion of OPDA to downstream products in wounded emmer wheat leaves. Transgenic plants overexpressing AtAOS or AtOPR3 with increased jasmonate levels show a similar phenotype, manifested by shortening of the first and second leaves and elongation of the fourth leaf, as well as increased tolerance to osmotic stress induced by the presence of the polyethylene glycol (PEG) 6000.
Publikation
The molecule (2S)-naringenin is a scaffold molecule with several nutraceutical properties. Currently, (2S)-naringenin is obtained through chemical synthesis and plant isolation. However, these methods have several drawbacks. Thus, heterologous biosynthesis has emerged as a viable alternative to its production. Recently, (2S)-naringenin production studies in Escherichia coli have used different tools to increase its yield up to 588 mg/L. In this study, we designed and assembled a bio-factory for (2S)-naringenin production. Firstly, we used several parametrized algorithms to identify the shortest pathway for producing (2S)-naringenin in E. coli, selecting the genes phenylalanine ammonia lipase (pal), 4-coumarate: CoA ligase (4cl), chalcone synthase (chs), and chalcone isomerase (chi) for the biosynthetic pathway. Then, we evaluated the effect of oxygen transfer on the production of (2S)-naringenin at flask (50 mL) and bench (4 L culture) scales. At the flask scale, the agitation rate varied between 50 rpm and 250 rpm. At the bench scale, the dissolved oxygen was kept constant at 5% DO (dissolved oxygen) and 40% DO, obtaining the highest (2S)-naringenin titer (3.11 ± 0.14 g/L). Using genome-scale modeling, gene expression analysis (RT-qPCR) of oxygen-sensitive genes was obtained.
Publikation
Light acts as a trigger to enhance the accumulation of secondary compounds in the aboveground part of plants; however, whether a similar triggering effect occurs in roots is unclear. Using an aeroponic setup, we investigated the effect of long-term exposure of roots to LED lighting of different wavelengths on the growth and phytochemical composition of two high-value medicinal plants, Artemisia annua and Hypericum perforatum. In A. annua, root exposure to white, blue, and red light enhanced the accumulation of artemisinin in the shoots by 2.3-, 2.5-, and 1.9-fold, respectively. In H. perforatum, root exposure to white, blue, red, and green light enhanced the accumulation of coumaroylquinic acid in leaves by 89, 65, 84, and 74%, respectively. Root lighting also increased flavonol concentrations. In contrast to its effects in the shoots, root illumination did not change phytochemical composition in the roots or root exudates. Thus, root illumination induces a systemic response, resulting in modulation of the phytochemical composition in distal tissues remote from the light exposure site.
Publikation
Plants have evolved complex mechanisms to adapt to nutrient-deficient environments, including stimulating lateral root proliferation into local soil patches with high nutrient content in response to heterogeneous nutrient distribution. Despite the widespread occurrence of this phenomenon in soil, the effect of heterogeneous nutrient distribution on the accumulation of secondary compounds in plant biomass and their exudation by roots remains largely unknown. This study aims to fill this critical knowledge gap by investigating how deficiency and unequal distributions of nitrogen (N), phosphorus (P), and iron (Fe) affect plant growth and accumulation of the antimalarial drug artemisinin (AN) in leaves and roots of Artemisia annua, as well as AN exudation by roots. Heterogeneous N and P supplies strongly increased root exudation of AN in half of a split-root system exposed to nutrient deficiency. By contrast, exposure to a homogeneous nitrate and phosphate deficiency did not modulate root exudation of AN. This indicates that a combination of local and systemic signals, reflecting low and high nutritional statuses, respectively, were required to enhance AN exudation. This exudation response was independent of the regulation of root hair formation, which was predominantly modulated by the local signal. In contrast to the heterogeneous supply of N and P, heterogeneous Fe supply did not modulate AN root exudation but increased AN accumulation in locally Fe-deficient roots. No modulation of nutrient supply significantly changed the accumulation of AN in A. annua leaves. The impact of a heterogeneous nitrate supply on growth and phytochemical composition was also investigated in Hypericum perforatum plants. Unlike in A. annue, the uneven N supply did not significantly influence the exudation of secondary compounds in the roots of H. perforatum. However, it did enhance the accumulation of several biologically active compounds, such as hypericin, catechin, and rutin isomers, in the leaves of H. perforatum. We propose that the capacity of plants to induce the accumulation and/or differential exudation of secondary compounds under heterogeneous nutrient supply is both species- and compound-specific. The ability to differentially exude AN may contribute to A. annua’s adaptation to nutrient disturbances and modulate allelopathic and symbiotic interactions in the rhizosphere.
Publikation
The importance of improving the FAIRness (findability, accessibility, interoperability, reusability) of research data is undeniable, especially in the face of large, complex datasets currently being produced by omics technologies. Facilitating the integration of a dataset with other types of data increases the likelihood of reuse, and the potential of answering novel research questions. Ontologies are a useful tool for semantically tagging datasets as adding relevant metadata increases the understanding of how data was produced and increases its interoperability. Ontologies provide concepts for a particular domain as well as the relationships between concepts. By tagging data with ontology terms, data becomes both human- and machine- interpretable, allowing for increased reuse and interoperability. However, the task of identifying ontologies relevant to a particular research domain or technology is challenging, especially within the diverse realm of fundamental plant research. In this review, we outline the ontologies most relevant to the fundamental plant sciences and how they can be used to annotate data related to plant-specific experiments within metadata frameworks, such as Investigation-Study-Assay (ISA). We also outline repositories and platforms most useful for identifying applicable ontologies or finding ontology terms.
Publikation
Salinity is a global environmental threat to agricultural production and food security around the world. To delineate salt-induced damage from adaption events we analysed a pair of sorghum genotypes which are contrasting in their response to salt stress with respect to physiological, cellular, metabolomic, and transcriptional responses. We find that the salt-tolerant genotype Della can delay the transfer of sodium from the root to the shoot, more swiftly deploy accumulation of proline and antioxidants in the leaves and transfer more sucrose to the root as compared to its susceptible counterpart Razinieh. Instead Razinieh shows metabolic indicators for a higher extent photorespiration under salt stress. Following sodium accumulation by a fluorescent dye in the different regions of the root, we find that Della can sequester sodium in the vacuoles of the distal elongation zone. The timing of the adaptive responses in Della leaves indicates a rapid systemic signal from the roots that is travelling faster than sodium itself. We arrive at a model where resistance and susceptibility are mainly a matter of temporal patterns in signalling.
Publikation
Due to its outstanding throughput and analytical resolution, gel-free LC-based shotgun proteomics represents the gold standard of proteome analysis. Thereby, the efficiency of sample preparation dramatically affects the correctness and reliability of protein quantification. Thus, the steps of protein isolation, solubilization, and proteolysis represent the principal bottleneck of shotgun proteomics. The desired performance of the sample preparation protocols can be achieved by the application of detergents. However, these compounds ultimately compromise reverse-phase chromatographic separation and disrupt electrospray ionization. Filter-aided sample preparation (FASP) represents an elegant approach to overcome these limitations. Although this method is comprehensively validated for cell proteomics, its applicability to plants and compatibility with plant-specific protein isolation protocols remain to be confirmed. Thereby, the most important gap is the absence of the data on the linearity of underlying protein quantification methods for plant matrices. To fill this gap, we address here the potential of FASP in combination with two protein isolation protocols for quantitative analysis of pea (Pisum sativum) seed and Arabidopsis thaliana leaf proteomes by the shotgun approach. For this aim, in comprehensive spiking experiments with bovine serum albumin (BSA), we evaluated the linear dynamic range (LDR) of protein quantification in the presence of plant matrices. Furthermore, we addressed the interference of two different plant matrices in quantitative experiments, accomplished with two alternative sample preparation workflows in comparison to conventional FASP-based digestion of cell lysates, considered here as a reference. The spiking experiments revealed high sensitivities (LODs of up to 4 fmol) for spiked BSA and LDRs of at least 0.6 × 102. Thereby, phenol extraction yielded slightly better recoveries, whereas the detergent-based method showed better linearity. Thus, our results indicate the very good applicability of FASP to quantitative plant proteomics with only limited impact of the protein isolation technique on the method’s overall performance.
Publikation
Chicory taproots accumulate sesquiterpene lactones lactucin, lactucopicrin, and 8-deoxylactucin, predominantly in their oxalated forms. The biosynthetic pathway for chicory sesquiterpene lactones has only partly been elucidated; the enzymes that convert farnesyl pyrophosphate to costunolide have been described. The next biosynthetic step of the conversion of costunolide to the tricyclic structure, guaianolide kauniolide, has so far not been elucidated in chicory. In this work three putative kauniolide synthase genes were identified in chicory named CiKLS1, CiKLS2, and CiKLS3. Their activity to convert costunolide to kauniolide was demonstrated in vitro using yeast microsome assays. Next, introduction of CRISPR/Cas9 reagents into chicory protoplasts was used to inactivate multiple chicory KLS genes and several chicory lines were successfully regenerated. The inactivation of the kauniolide synthase genes in chicory by the CRISPR/Cas9 approach resulted in interruption of the sesquiterpene lactone biosynthesis in chicory leaves and taproots. In chicory taproots, but not in leaves, accumulation of costunolide and its conjugates was observed to high levels, namely 1.5 mg/g FW. These results confirmed that all three genes contribute to STL accumulation, albeit to different extent. These observations demonstrate that three genes oriented in tandem on the chicory genome encode kauniolide synthases that initiate the conversion of costunolide toward the sesquiterpene lactones in chicory.