- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
The endophytic fungus Piriformospora indica colonizes the roots of the model plant Arabidopsis thaliana and promotes its growth and seed production. The fungus can be cultivated in axenic culture without a host, and therefore this is an excellent system to investigate plant–fungus symbiosis.The growth of etr1, ein2 and ein3/eil1 mutant plants was not promoted or even inhibited by the fungus; the plants produced less seeds and the roots were more colonized compared with the wild‐type. This correlates with a mild activation of defence responses. The overexpression of ETHYLENE RESPONSE FACTOR1 constitutively activated defence responses, strongly reduced root colonization and abolished the benefits for the plants.Piriformospora indica‐mediated stimulation of growth and seed yield was not affected by jasmonic acid, and jasmonic acid‐responsive promoter β‐glucuronidase gene constructs did not respond to the fungus in Arabidopsis roots.We propose that ethylene signalling components and ethylene‐targeted transcription factors are required to balance beneficial and nonbeneficial traits in the symbiosis. The results show that the restriction of fungal growth by ethylene signalling components is required for the beneficial interaction between the two symbionts.
Publikation
Two cDNAs encoding allene oxide cyclases (PpAOC1, PpAOC2), key enzymes in the formation of jasmonic acid (JA) and its precursor (9S,13S)‐12‐oxo‐phytodienoic acid (cis‐(+)‐OPDA), were isolated from the moss Physcomitrella patens.Recombinant PpAOC1 and PpAOC2 show substrate specificity against the allene oxide derived from 13‐hydroperoxy linolenic acid (13‐HPOTE); PpAOC2 also shows substrate specificity against the allene oxide derived from 12‐hydroperoxy arachidonic acid (12‐HPETE).In protonema and gametophores the occurrence of cis‐(+)‐OPDA, but neither JA nor the isoleucine conjugate of JA nor that of cis‐(+)‐OPDA was detected.Targeted knockout mutants for PpAOC1 and for PpAOC2 were generated, while double mutants could not be obtained. The ΔPpAOC1 and ΔPpAOC2 mutants showed reduced fertility, aberrant sporophyte morphology and interrupted sporogenesis.