- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
Plant immunity is crucial to plant health but comes at an expense. For optimal plant growth, tight immune regulation is required to prevent unnecessary rechannelling of valuable resources. Pattern- and effector-triggered immunity (PTI/ETI) represent the two tiers of immunity initiated after sensing microbial patterns at the cell surface or pathogen effectors secreted into plant cells, respectively. Recent evidence of PTI-ETI cross-potentiation suggests a close interplay of signalling pathways and defense responses downstream of perception that is still poorly understood. This review will focus on controls on plant immunity through phosphorylation, a universal and key cellular regulatory mechanism. Rather than a complete overview, we highlight “what’s new in protein kinase/phosphatase signalling” in the immunity field. In addition to phosphoregulation of components in the pattern recognition receptor (PRR) complex, we will cover the actions of the major immunity-relevant intracellular protein kinases/phosphatases in the ‘signal relay’, namely calcium-regulated kinases (e.g. calcium-dependent protein kinases, CDPKs), mitogen-activated protein kinases (MAPKs), and various protein phosphatases. We discuss how these factors define a phosphocode that generates cellular decision-making ‘logic gates’, which contribute to signalling fidelity, amplitude, and duration. To underscore the importance of phosphorylation, we summarize strategies employed by pathogens to subvert plant immune phosphopathways. In view of recent game-changing discoveries of ETI-derived resistosomes organizing into calcium-permeable pores, we speculate on a possible calcium-regulated phosphocode as the mechanistic control of the PTI-ETI continuum.
Publikation
The rapid annotation and identification by mass spectrometry techniques of flavonoids remains a challenge, due to their structural diversity and the limited availability of reference standards. This study applies a workflow to characterize two isoflavonoids, the orobol-C-glycosides analogs, using high-energy collisional dissociation (HCD)- and collision-induced dissociation (CID)-type fragmentation patterns, and also to evaluate the antioxidant effects of these compounds by ferric reducing antioxidant power (FRAP), 2,2′-azino-bis(3-ethylbenzothiazolin acid) 6-sulfonic acid (ABTS), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods. By the CID-type fragmentation, in positive mode and at all high-resolution mass spectrometry (HRMS) multiple stage, there were shown differences in the annotation of the compounds, mainly concerning some ratios of relative abundance. At CID-MS2 20 eV, the compounds could be efficiently characterized, because they present distinct base peaks [M + H]+ and [M + H–H2O]+ for the orobol-8-C- and orobol-6-C-glycoside, respectively. Similarly, by the HCD-type fragmentation, in HRMS2 stage, differences between orobol analogs in both mode of ionization were observed. However, the HR HCD-MS2 at 80 eV, in positive mode, generated more ions and each isomer presented different base peaks ions, [0,2X]+ for the orobol-8-C-glycoside and [0,3X]+ for the orobol-6-C-glycoside. By the DPPH, the 8-C-derivative showed a very close value compared with the standard rutin and, in the ABTS method, a higher radical-scavenging activity. In both methods, the EC50 of orobol-8-C-glycoside was almost twice better compared with orobol-6-C-glycoside. In FRAP, both C-glycosides showed a good capacity as Fe+3 reducing agents. We could realize that combined MS techniques, highlighting the positive mode of ionization, can be used to evaluate the isoflavones analogs being useful to differentiate between the isomeric flavones; therefore, these data are important to mass spectrometry dereplication studies become more efficient.
Publikation
Long‐chain ferulic acid esters, such as eicosyl ferulate (1), show a complex and analytically valuable fragmentation behavior under negative‐ion electrospay collision‐induced dissociation ((‐)‐ESI‐CID) mass spectrometry, as studied by use of a high‐resolution (Orbitrap) mass spectrometer. In a strong contrast to the very simple fragmentation of the [M + H]+ ion, which is discussed briefly, the deprotonated molecule, [M ‐ H]‐, exhibits a rich secondary fragmentation chemistry. It first loses a methyl radical (MS2) and the ortho‐quinoid [M ‐ H ‐ Me]‐• radical anion thus formed then dissociates by loss of an extended series of neutral radicals, CnH2n+1• (n = 0‐16) from the long alkyl chain, in competition with the expulsion of CO and CO2 (MS3). The further fragmentation (MS4) of the [M ‐ H ‐ Me ‐ C3H7]‐ ion, discussed as an example, and the highly specific losses of alkyl radicals from the [M ‐ H ‐ Me ‐ CO]‐• and [M ‐ H ‐ Me ‐ CO2]‐• ions provide some mechanistic and structural insights.
Publikation
Identification and structural determination of small molecules by mass spectrometry is an important step in chemistry and biochemistry. However, the chemically realistic annotation of a fragment ion spectrum can be a difficult challenge. We developed ChemFrag, for the detection of fragmentation pathways and the annotation of fragment ions with chemically reasonable structures. ChemFrag combines a quantum chemical with a rule‐based approach. For different doping substances as test instances, ChemFrag correctly annotates fragment ions. In most cases, the predicted fragments are chemically more realistic than those from purely combinatorial approaches, or approaches based on machine learning. The annotation generated by ChemFrag often coincides with spectra that have been manually annotated by experts. This is a major advance in peak annotation and allows a more precise automatic interpretation of mass spectra.
Publikation
Representative compounds with a 1,3‐dihydroxybenzene substructure belonging to different important polyphenol classes (stilbenes, flavones, isoflavones, flavonols, flavanones, flavanols, phloroglucinols, anthraquinones and bisanthraquinones) were investigated based on detailed high‐resolution tandem mass spectrometry measurements with an Orbitrap system under negative ion electrospray conditions. The mass spectral behaviour of these compound classes was compared among each other not only with respect to previously described losses of CO, CH2CO and C3O2 but also concerning the loss of CO2 and successive specific fragmentations. Furthermore, some unusual fragmentations such as the loss of a methyl radical during mass spectral decomposition are discussed. The obtained results demonstrate both similarities and differences in their mass spectral fragmentation under MSn conditions, allowing a characterization of the corresponding compound type.
Publikation
Mass spectrometry (MS) is an important analytical technique for the detection and identification of small compounds. The main bottleneck in the interpretation of metabolite profiling or screening experiments is the identification of unknown compounds from tandem mass spectra.Spectral libraries for tandem MS, such as MassBank or NIST, contain reference spectra for many compounds, but their limited chemical coverage reduces the chance for a correct and reliable identification of unknown spectra outside the database domain.On the other hand, compound databases like PubChem or ChemSpider have a much larger coverage of the chemical space, but they cannot be queried with spectral information directly. Recently, computational mass spectrometry methods and in silico fragmentation prediction allow users to search such databases of chemical structures.We present a new strategy called MetFusion to combine identification results from several resources, in particular, from the in silico fragmenter MetFrag with the spectral library MassBank to improve compound identification. We evaluate the performance on a set of 1062 spectra and achieve an improved ranking of the correct compound from rank 28 using MetFrag alone, to rank 7 with MetFusion, even if the correct compound and similar compounds are absent from the spectral library. On the basis of the evaluation, we extrapolate the performance of MetFusion to the KEGG compound database.
Publikation
A series of prevailing prenylated furanocoumarins from leaves of Dorstenia gigas and Dorstenia foetida (Moraceae) were investigated by liquid chromatography/electrospray tandem mass spectrometry. The mass spectral behavior of the furanocoumarins under positive ion electrospray conditions is discussed using both an ion trap and a triple quadrupole system. It is demonstrated that both methods represent valuable tools not only for the rapid classification of this type of compounds, but also with respect to their substitution pattern.
Publikation
MassBank is the first public repository of mass spectra of small chemical compounds for life sciences (<3000 Da). The database contains 605 electron‐ionization mass spectrometry(EI‐MS), 137 fast atom bombardment MS and 9276 electrospray ionization (ESI)‐MSn data of 2337 authentic compounds of metabolites, 11 545 EI‐MS and 834 other‐MS data of 10 286 volatile natural and synthetic compounds, and 3045 ESI‐MS2 data of 679 synthetic drugs contributed by 16 research groups (January 2010). ESI‐MS2 data were analyzed under nonstandardized, independent experimental conditions. MassBank is a distributed database. Each research group provides data from its own MassBank data servers distributed on the Internet. MassBank users can access either all of the MassBank data or a subset of the data by specifying one or more experimental conditions. In a spectral search to retrieve mass spectra similar to a query mass spectrum, the similarity score is calculated by a weighted cosine correlation in which weighting exponents on peak intensity and the mass‐to‐charge ratio are optimized to the ESI‐MS2 data. MassBank also provides a merged spectrum for each compound prepared by merging the analyzed ESI‐MS2 data on an identical compound under different collision‐induced dissociation conditions. Data merging has significantly improved the precision of the identification of a chemical compound by 21–23% at a similarity score of 0.6. Thus, MassBank is useful for the identification of chemical compounds and the publication of experimental data.
Publikation
Mono‐ and poly‐adenosine diphosphate (ADP)‐ribosylation are common post‐translational modifications incorporated by sequence‐specific enzymes at, predominantly, arginine, asparagine, glutamic acid or aspartic acid residues, whereas non‐enzymatic ADP‐ribosylation (glycation) modifies lysine and cysteine residues. These glycated proteins and peptides (Amadori‐compounds) are commonly found in organisms, but have so far not been investigated to any great degree. In this study, we have analyzed their fragmentation characteristics using different mass spectrometry (MS) techniques. In matrix‐assisted laser desorption/ionization (MALDI)‐MS, the ADP‐ribosyl group was cleaved, almost completely, at the pyrophosphate bond by in‐source decay. In contrast, this cleavage was very weak in electrospray ionization (ESI)‐MS. The same fragmentation site also dominated the MALDI‐PSD (post‐source decay) and ESI‐CID (collision‐induced dissociation) mass spectra. The remaining phospho‐ribosyl group (formed by the loss of adenosine monophosphate) was stable, providing a direct and reliable identification of the modification site via the b‐ and y‐ion series. Cleavage of the ADP‐ribose pyrophosphate bond under CID conditions gives access to both neutral loss (347.10 u) and precursor‐ion scans (m/z 348.08), and thereby permits the identification of ADP‐ribosylated peptides in complex mixtures with high sensitivity and specificity. With electron transfer dissociation (ETD), the ADP‐ribosyl group was stable, providing ADP‐ribosylated c‐ and z‐ions, and thus allowing reliable sequence analyses.
Publikation
Total phenolic choline ester fractions prepared from seeds of Arabidopsis thaliana and Brassica napus were analyzed by capillary LC/ESI‐QTOF‐MS and direct infusion ESI‐FTICR‐MS. In addition to the dominating sinapoylcholine, 30 phenolic choline esters could be identified based on accurate mass measurements, interpretation of collision‐induced dissociation (CID) mass spectra, and synthesis of selected representatives. The compounds identified so far include substituted hydroxycinnamoyl‐ and hydroxybenzoylcholines, respective monohexosides as well as oxidative coupling products of phenolic choline esters and monolignols. Phenolic choline esters are well separable by reversed‐phase liquid chromatography and sensitively detectable using electrospray ionization mass spectrometry in positive ion mode. CID mass spectra obtained from molecular ions facilitate the characterization of both the type and substitution pattern of such compounds. Therefore, LC/ESI‐MS/MS represents a valuable tool for comprehensive qualitative and quantitative analysis of this compound class. Copyright © 2008 John Wiley & Sons, Ltd.