- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
Purification through repeated column chromatography over silica gel and Sephadex LH-20 of the ethanol extract of the stems of Cissus aralioides (Baker) Planch. resulted in the isolation of a new ceramide, aralioidamide A (1) along with five known compounds (2-6). Their structures were determined by the extensive analysis of their spectroscopic (1D and 2D NMR) and spectrometric data, and comparison with those reported in the literature. Aralioidamide A (1) displayed weak antibacterial activity (MIC = 256 μg/mL) against Bacillus subtilis, Staphylococcus aureus and Shigella flexneri and was inactive (MIC > 256 μg/mL) against the tested fungi.
Publikation
Plant immunity is crucial to plant health but comes at an expense. For optimal plant growth, tight immune regulation is required to prevent unnecessary rechannelling of valuable resources. Pattern- and effector-triggered immunity (PTI/ETI) represent the two tiers of immunity initiated after sensing microbial patterns at the cell surface or pathogen effectors secreted into plant cells, respectively. Recent evidence of PTI-ETI cross-potentiation suggests a close interplay of signalling pathways and defense responses downstream of perception that is still poorly understood. This review will focus on controls on plant immunity through phosphorylation, a universal and key cellular regulatory mechanism. Rather than a complete overview, we highlight “what’s new in protein kinase/phosphatase signalling” in the immunity field. In addition to phosphoregulation of components in the pattern recognition receptor (PRR) complex, we will cover the actions of the major immunity-relevant intracellular protein kinases/phosphatases in the ‘signal relay’, namely calcium-regulated kinases (e.g. calcium-dependent protein kinases, CDPKs), mitogen-activated protein kinases (MAPKs), and various protein phosphatases. We discuss how these factors define a phosphocode that generates cellular decision-making ‘logic gates’, which contribute to signalling fidelity, amplitude, and duration. To underscore the importance of phosphorylation, we summarize strategies employed by pathogens to subvert plant immune phosphopathways. In view of recent game-changing discoveries of ETI-derived resistosomes organizing into calcium-permeable pores, we speculate on a possible calcium-regulated phosphocode as the mechanistic control of the PTI-ETI continuum.
Publikation
Bacterial wilts of potato, tomato, pepper, and or eggplant caused by Ralstonia solanacearum are among the most serious plant diseases worldwide. In this study, the issue of developing bactericidal agents from natural sources against R. solanacearum derived from plant extracts was addressed. Extracts prepared from 25 plant species with antiseptic relevance in Egyptian folk medicine were screened for their antimicrobial properties against the potato pathogen R. solancearum by using the disc‐zone inhibition assay and microtitre plate dilution method. Plants exhibiting notable antimicrobial activities against the tested pathogen include extracts from Acacia arabica and Punica granatum. Bioactivity‐guided fractionation of A. arabica and P. granatum resulted in the isolation of bioactive compounds 3,5‐dihydroxy‐4‐methoxybenzoic acid and gallic acid, in addition to epicatechin. All isolates displayed significant antimicrobial activities against R. solanacearum (MIC values 0.5–9 mg/ml), with 3,5‐dihydroxy‐4‐methoxybenzoic acid being the most effective one with a MIC value of 0.47 mg/ml. We further performed a structure–activity relationship (SAR) study for the inhibition of R. solanacearum growth by ten natural, structurally related benzoic acids.
Publikation
Rove beetles of the genus Stenus produce and store bioactive alkaloids like stenusine (3), 3‐(2‐methylbut‐1‐enyl)pyridine (4), and cicindeloine (5) in their pygidial glands to protect themselves from predation and microorganismic infestation.The biosynthesis of stenusine (3), 3‐(2‐methylbut‐1‐enyl)pyridine (4), and cicindeloine (5) was previously investigated in Stenus bimaculatus, Stenus similis, and Stenus solutus, respectively. The piperideine alkaloid cicindeloine (5) occurs also as a major compound in the pygidial gland secretion of Stenus cicindeloides. The three metabolites follow the same biosynthetic pathway, where the N‐heterocyclic ring is derived from L‐lysine and the side chain from L‐isoleucine. The different alkaloids are finally obtained by few modifications of shared precursor molecules, such as 2,3,4,5‐tetrahydro‐5‐(2‐methylbutylidene)pyridine (1). This piperideine alkaloid was synthesized and detected by GC/MS and GC at a chiral phase in the pygidial glands of Stenus similis, Stenus tarsalis, and Stenus cicindeloides.
Publikation
A short survey of historic and current methods for the synthesis of selenocysteine, selenocystine, and derivatives and related compounds is presented, with an additional emphasis on the formation of selenocysteine‐derived SeS bridges. The majority of methods to the amino acid starts with protected and O ‐activated serine, but also other concepts are included such as radical or multicomponent strategies, the latter allowing also direct access to peptoids in one pot. Of special importance is the monomeric oxidative cyclization of selenocysteine–cysteine peptides to eight‐membered and larger rings with a selenenylsulfide bridge, a crucial element in several selenoproteins.
Publikation
Two new N ‐glucosylated indole alkaloids were isolated from fruiting bodies of the basidiomycete Cortinarius brunneus (Pers .) Fr . The structures were elucidated by means of the spectroscopic data. Additionally, the very recently reported compounds N‐ 1‐β‐ glucopyranosyl‐3‐(carboxymethyl)‐1H ‐indole (3 ) and N‐ 1‐β‐ glucopyranosyl‐3‐(2‐methoxy‐2‐oxoethyl)‐1H ‐indole (4 ) could be detected. Compound 3 is the N ‐glucoside of the plant‐growth regulator 1H ‐indole‐3‐acetic acid (IAA), but, in contrast, it does not exhibit auxin‐like activity in an Arabidopsis thaliana tap root elongation assay.
Publikation
New, partially acetylated dihydroxy fatty acids could be identified in the floral oil of Malpighia coccigera (Malpighiaceae): 7‐OAc,3‐OH 20 : 0, 7‐OAc,3‐OH 22 : 0, 9‐OAc,3‐OH 22 : 0, 9‐OAc,5‐OH 22 : 0, 3,9‐diOAc 22 : 0, 9‐OAc,3‐OH 24 : 0 , and 11‐OAc,5‐OH 24 : 0 . The substitution patterns of all hitherto undescribed dihydroxylated and additionally identified monohydroxylated fatty acids are in agreement with a polyketide analogous biosynthesis. Intermediates may be 3‐acetoxy fatty acids (C16, C18, and C20), known from flower secretions of other phylogenetically unrelated plant families. A possible relationship between plant epicuticular wax and floral oil biosynthesis is discussed. It may explain why an independent but convergent development of oil flowers and flower oils in unrelated plant families was possible.