- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
Late stage enzymatic prenylation and methylation are means to diversify (natural) compounds and to specify their functions. In eukaryotes and microbes, these steps are performed by large enzyme families, the prenyl and methyl transferases, which modify various types of small molecules, like isoprenoids, phenolics or alkaloids, but also DNA and proteins. We investigate the theoretical basis of these processes and possible commercial applications in synthetic chemistry.
Publikation
Precise annotation of time and spatial distribution of enzymes involved in plant secondary metabolism by gel electrophoresis are usually difficult due to their low abundance. Therefore, effective methods to enrich these enzymes are required to correlate available transcript and metabolite data with the actual presence of active enzymes in wild-type and mutant plants or to monitor variations of these enzymes under various types of biotic and abiotic stress conditions. S-Adenosyl-L-methionine-dependent O-methyltransferases play important roles in the modification of natural products such as phenylpropanoids or alkaloids. In plants they occur as small superfamilies with defined roles for each of its members in different organs and tissues. We explored the use of S-adenosyl-L-homocysteine as a selectivity function in affinity-based protein profiling supported by capture compound mass spectrometry. Due to their high affinity to this ligand it was possible to identify developmental changes of flower-specific patterns of plant natural product O-methyltransferases and corroborate the absence of individual O-methyltransferases in the corresponding Arabidopsis knockout lines. Developmental changes in the OMT pattern were correlated with transcript data obtained by qPCR.
Publikation
Phenylpropanoid polyamine conjugates are widespread in plant species. Their presence has been established in seeds, flower buds, and pollen grains. A biosynthetic pathway proposed for hydroxycinnamoyl spermidine conjugates has been suggested for the model plant Arabidopsis thaliana with a central acyl transfer reaction performed by a BAHD-like hydroxycinnamoyl transferase. A detailed liquid chromatography (LC)–electrospray ionization–mass spectrometry- and tandem-mass-spectrometry (MS/MS)-based survey of wild-type and spermidine hydroxycinnamoyl transferase (SHT) mutants identified more than 30 different bis- and tris-substituted spermidine conjugates, five of which were glycosylated, in the methanol-soluble fraction of the pollen exine. On the basis of characterized fragmentation patterns, a high-throughput LC–MS/MS method for highly sensitive HCAA relative quantification (targeted profiling) was developed. Only minor qualitative and quantitative differences in the pattern of bis-acyl spermidine conjugates in the SHT mutant compared to wild-type plants provide strong evidence for the presence of multiple BAHD-like acyl transferases and suggest a much more complex array of enzymatic steps in the biosynthesis of these conjugates than previously anticipated.
Publikation
The general phenylpropanoid metabolism generates an enormous array of secondary metabolites based on the few intermediates of the shikimate pathway as the core unit. The resulting hydroxycinnamic acids and esters are amplified in several cascades by a combination of reductases, oxygenases, and transferases to result in an organ and developmentally specific pattern of metabolites, characteristic for each plant species. During the last decade, methodology driven targeted and non-targeted approaches in several plant species have enabled the identification of the participating enzymes of this complex biosynthetic machinery, and revealed numerous genes, enzymes, and metabolites essential for regulation and compartmentation. Considerable success in structural and computational biology, combined with the analytical sensitivity to detect even trace compounds and smallest changes in the metabolite, transcript, or enzyme pattern, has facilitated progress towards a comprehensive view of the plant response to its biotic and abiotic environment. Transgenic approaches have been used to reveal insights into an apparently redundant gene and enzyme pattern required for functional integrity and plasticity of the various phenylpropanoid biosynthetic pathways. Nevertheless, the function and impact of all members of a gene family remain to be completely established. This review aims to give an update on the various facets of the general phenylpropanoid pathway, which is not only restricted to common lignin or flavonoid biosynthesis, but feeds into a variety of other aromatic metabolites like coumarins, phenolic volatiles, or hydrolyzable tannins.
Publikation
0
Publikation
Phenylpropanoid polyamine conjugates have been identified in flowers of many plant species. Their presence in Arabidopsis thaliana has only been recently established in flower buds and pollen grains. Annotation and location of a cation-dependent O-methyltransferase AtTSM1 specifically to the tapetum of young flower buds enabled the subsequent identification of several genes with a putative role in phenylpropanoid polyamine conjugate biosynthesis. Based on the analysis of several A. thaliana knockout mutants, a biosynthetic pathway of these conjugates is proposed, which involves two methylation steps catalyzed by different cation-dependent O-methyltransferases, a cytochrome P450 (CYP98A8) catalyzed hydroxylation, and a conjugating acyl transfer performed by a BAHD-like, hydroxycinnamoyl (HC)-transferase. LC/MS based metabolite profiling of the cyp98A8 knockout line identified new feruloyl- and 4-coumaroylspermidine conjugates in the corresponding flowers consistent with a role of this gene in the hydroxylation of these conjugates. A pattern of minor amounts of bis- and tris-acylspermidine conjugates, likely the products of additional HC-transferases were identified in wild type as well as in the mutant lines. Transcript suppression of the genes early in the pathway was observed in knockout or RNAi-lines of the genes encoding late enzymatic steps. The implication of these findings for spermidine conjugate biosynthesis in flower buds of A. thaliana is discussed.
Publikation
The coding sequence of the cyanobacterium Synechocystis sp. strain PCC 6803 slr0095 gene was cloned and functionally expressed in Escherichia coli. The corresponding enzyme was classified as a cation- and S-adenosyl-l-methionine-dependent O-methyltransferase (SynOMT), consistent with considerable amino acid sequence identities to eukaryotic O-methyltransferases (OMTs). The substrate specificity of SynOMT was similar with those of plant and mammalian CCoAOMT-like proteins accepting a variety of hydroxycinnamic acids and flavonoids as substrates. In contrast to the known mammalian and plant enzymes, which exclusively methylate the meta-hydroxyl position of aromatic di- and trihydroxy systems, Syn-OMT also methylates the para-position of hydroxycinnamic acids like 5-hydroxyferulic and 3,4,5-trihydroxycinnamic acid, resulting in the formation of novel compounds. The x-ray structure of SynOMT indicates that the active site allows for two alternative orientations of the hydroxylated substrates in comparison to the active sites of animal and plant enzymes, consistent with the observed preferred para-methylation and position promiscuity. Lys3 close to the N terminus of the recombinant protein appears to play a key role in the activity of the enzyme. The possible implications of these results with respect to modifications of precursors of polymers like lignin are discussed.
Publikation
Plant S-adenosyl-l-methionine-dependent class I natural product O-methyltransferases (OMTs), related to animal catechol OMTs, are dependent on bivalent cations and strictly specific for the meta position of aromatic vicinal dihydroxy groups. While the primary activity of these class I enzymes is methylation of caffeoyl coenzyme A OMTs, a distinct subset is able to methylate a wider range of substrates, characterized by the promiscuous phenylpropanoid and flavonoid OMT. The observed broad substrate specificity resides in two regions: the N-terminus and a variable insertion loop near the C-terminus, which displays the lowest degree of sequence conservation between the two subfamilies. Structural and biochemical data, based on site-directed mutagenesis and domain exchange between the two enzyme types, present evidence that only small topological changes among otherwise highly conserved 3-D structures are sufficient to differentiate between an enzymatic generalist and an enzymatic specialist in plant natural product methylation.
Publikation
Cation‐ and S ‐adenosyl‐l ‐methionine (AdoMet)‐dependent plant natural product methyltransferases are referred to as CCoAOMTs because of their preferred substrate, caffeoyl coenzyme A (CCoA). The enzymes are encoded by a small family of genes, some of which with a proven role in lignin monomer biosynthesis. In Arabidopsis thaliana individual members of this gene family are temporally and spatially regulated. The gene At1g67990 is specifically expressed in flower buds, and is not detected in any other organ, such as roots, leaves or stems. Several lines of evidence indicate that the At1g67990 transcript is located in the flower buds, whereas the corresponding CCoAOMT‐like protein, termed AtTSM1, is located exclusively in the tapetum of developing stamen. Flowers of At1g67990 RNAi‐suppressed plants are characterized by a distinct flower chemotype with severely reduced levels of the N ′,N ′′‐ bis‐(5‐hydroxyferuloyl)‐N ′′′‐sinapoylspermidine compensated for by N1 ,N5 ,N10 ‐tris‐(5‐hydroxyferuloyl)spermidine derivative, which is characterized by the lack of a single methyl group in the sinapoyl moiety. This severe change is consistent with the observed product profile of AtTSM1 for aromatic phenylpropanoids. Heterologous expression of the recombinant protein shows the highest activity towards a series of caffeic acid esters, but 5‐hydroxyferuloyl spermidine conjugates are also accepted substrates. The in vitro substrate specificity and the in vivo RNAi‐mediated suppression data of the corresponding gene suggest a role of this cation‐dependent CCoAOMT‐like protein in the stamen/pollen development of A. thaliana .
Publikation
The pigments of Opuntia ficus‐indica fruits, which are derived from the betalain rather than anthocyanin pathway, have an extraordinary range in colour from lime green, orange, red to purple. This is a result from varying concentrations and proportions of about half a dozen betaxanthins and betacyanins. The yellow‐orange betaxanthins are derived from spontaneous condensation of betalamic acid with amines or amino acids. The reddish‐purple betacyanins are enzymatically formed from betalamic acid and cyclo ‐dihydroxyphenylalanine (DOPA) yielding betanidin and further glycosylated on either of the two hydroxyls of the cyclo ‐DOPA moiety. In the present work, degenerated primers were used to obtain partial genomic sequences of two major genes in the biosynthetic pathway for betalains, that is the 4,5‐extradiol dioxygenase which forms the betalamic acid responsible for the yellow colour and a putative 5‐O ‐glucosyltransferase which glycosylates betanidin in Dorotheanthus bellidiformis and may be responsible for the red colour. Differences in the genomic DNA between coloured versus non‐coloured varieties were not found. Regulatory mechanisms seem to independently control pigmentation of O. ficus‐indica fruit tissues for inner core, peel and epidermis. Core pigmentation occurs first and well before fruit maturity and peel pigmentation. Peel pigmentation is fully developed at maturity, presumably related to maximum soluble solids. Epidermal pigmentation appears to be independent of core and peel pigmentation, perhaps because of light stimulation. Similar control mechanisms exist through transcription factors for the major enzyme regulating anthocyanin production in grapes.