- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Preprints
Publikation
Preprints
Publikation
Bücher und Buchkapitel
Publikation
Publikation
Publikation
Preprints
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Technologie-Plattformen
Datenbanken und Tools
Doktorandenprogramm
Postdoktoranden
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Publikationen
Publikationen
Preprints
Plant cells experience a variety of mechanical stresses from both internal and external sources, including turgor pressure, mechanical strains arising from heterogeneous growth between neighboring cells, and environmental factors like touch from soil, rain, or wind [1,2]. These stresses serve as signals at the cell-, tissue- and organismal level to coordinate plant growth during development and stress responses [3]. In plants, the physical cell wall-plasma membrane-microtubule continuum is proposed to be integral in transducing mechanical signals from the exterior to intracellular components [4–6]. Cortical microtubules (CMTs) rapidly reorient in response to mechanical stress to align with the maximal tensile stress direction [7,8]. Several studies proposed that CMTs themselves may act as stress sensors; the precise mechanisms involved in the regulation of CMTs and the modes of sensing, however, are still not clearly understood. Here, we show that IQD2 and KLCR1 are enriched at CMTs in proximity to the plasma membrane. IQD2, which is a bona fide microtubule-associated protein, promotes microtubule localization of KLCR1. By combining cross-linking mass spectrometry (XL-MS) and computational modeling with structure-function studies, we present first experimental insights into the composition and structure of IQD2-KLCR1 complexes. Further, we demonstrate that the IQD2-KLCR1 module is a positive regulator of microtubule mechano-responses in pavement cells. Collectively, our work identifies the IQD2-KLCR1 module as novel regulator of mechanostress-mediated CMT reorientation and provides a framework for future mechanistic studies aimed at a functional dissection of mechanotransduction at the plasma membrane-CMT interface during growth and plant morphogenesis.HighlightsIQD2 and KLCR1 localize to the plasma membrane-microtubule nexusIQD2 is required for efficient microtubule targeting of KLCR1in plantaIQD2 physically interacts with KLCR1 and microtubulesThe IQD2-KLCR1 module promotes mechano-stress induced microtubule reorganization
Publikation
The genomes of many plants, animals, and fungi frequently comprise dispensable B chromosomes that rely upon various chromosomal drive mechanisms to counteract the tendency of non-essential genetic elements to be purged over time. The B chromosome of rye – a model system for nearly a century – undergoes targeted nondisjunction during first pollen mitosis, favouring segregation into the generative nucleus, thus increasing their numbers over generations. However, the genetic mechanisms underlying this process are poorly understood. Here, using a newly-assembled, ~430 Mb-long rye B chromosome pseudomolecule, we identify five candidate genes whose role as trans-acting moderators of the chromosomal drive is supported by karyotyping, chromosome drive analysis and comparative RNA-seq. Among them, we identify DCR28, coding a microtubule-associated protein related to cell division, and detect this gene also in the B chromosome of Aegilops speltoides. The DCR28 gene family is neo-functionalised and serially-duplicated with 15 B chromosome-located copies that are uniquely highly expressed in the first pollen mitosis of rye.
Preprints
In ancestors of modern-day streptophyte algae, cell division has undergone a switch from a cleavage-like mode to an inside-out mechanism, in which new cell walls are inserted at the cell center and expand centrifugally, eventually fusing with the maternal cell wall at a specific cortical region, termed cortical division zone (CDZ) 1-3. This switch in cell division involved the stepwise evolution of two novel cytoskeleton arrays, the phragmoplast and preprophase band (PPB). The PPB/phragmoplast system possibly provided basis for tunable cell division orientation, which enabled 3D development and morphological adaptations required for successful colonization of terrestrial habitats4. How the cytoskeleton acquired its novel functions, however, is still largely enigmatic. Our previous work identified IQ67-DOMAIN8 (IQD8) of Arabidopsis thaliana as an important determinant of PPB formation and division plane positioning5,6. IQD8 is an intrinsically disordered scaffold protein that interacts with core components of the CDZ7. Here, through phylogenetic and functional analyses, we show that IQDs emerged in the last common ancestor of Klebsormidiophyceae and Phragmoplastophyta algae. Gradual changes in motif composition and acquisition likely facilitated functional diversification of IQDs in terms of subcellular localization and protein-protein interactions. Cross-complementation studies in Arabidopsis mutants provide evidence for evolutionarily conserved functions of land-plant IQDs as key regulators of PPB formation and division plane control. In summary, our work establishes IQDs as plant-specific scaffold proteins, which likely played a role in rewiring and neofunctionalization of protein-protein interaction networks at distinct subcellular sites to facilitate evolutionary adaptations of the cell division apparatus and microtubule cytoskeleton in general.
Publikation
Treatment of potato plants with the pathogen-associated molecular pattern Pep-13 leads to the activation of more than 1200 genes. One of these, StPIP1_1, encodes a protein of 76 amino acids with sequence homology to PAMP-induced secreted peptides (PIPs) from Arabidopsis thaliana. Expression of StPIP1_1 is also induced in response to infection with Phytophthora infestans, the causal agent of late blight disease. Apoplastic localization of StPIP1_1-mCherry fusion proteins is dependent on the presence of the predicted signal peptide. A synthetic peptide corresponding to the last 13 amino acids of StPIP1_1 elicits the expression of the StPIP1_1 gene itself, as well as that of pathogenesis related genes. The oxidative burst induced by exogenously applied StPIP1_1 peptide in potato leaf disks is dependent on functional StSERK3A/B, suggesting that StPIP1_1 perception occurs via a receptor complex involving the co-receptor StSERK3A/B. Moreover, StPIP1_1 induces expression of FRK1 in Arabidopsis in an RLK7-dependent manner. Expression of an RLK from potato with high sequence homology to AtRLK7 is induced by StPIP1_1, by Pep-13 and in response to infection with P. infestans. These observations are consistent with the hypothesis that, upon secretion, StPIP1_1 acts as an endogenous peptide required for amplification of the defense response.
Bücher und Buchkapitel
Leaf epidermis pavement cells form highly complex shapes with interlocking lobes and necks at their anticlinal walls. The microtubule cytoskeleton plays essential roles in pavement cell morphogenesis, in particular at necks. Vice versa, shape generates stress patterns that regulate microtubule organization. Genetic or pharmacological perturbations that affect pavement cell shape often affect microtubule organization. Pavement cell shape and microtubule organization are therefore closely interconnected. Here, we present commonly used approaches for the quantitative analysis of pavement cell shape characteristics and of microtubule organization. In combination with ablation experiments, these methods can be applied to investigate how different genotypes (or treatments) affect the organization and stress responsiveness of the microtubule cytoskeleton.
Publikation
The preprophase band (PPB) is a transient cytokinetic structure that marks the future division plane at the onset of mitosis. The PPB forms a dense cortical ring of mainly microtubules, actin filaments, endoplasmic reticulum, and associated proteins that encircles the nucleus of mitotic cells. After PPB disassembly, the positional information is preserved by the cortical division zone (CDZ). The formation of the PPB and its contribution to timely CDZ set-up involves activities of functionally distinct microtubule-associated proteins (MAPs) that interact physically and genetically to support robust division plane orientation in plants. Recent studies identified two types of plant-specific MAPs as key regulators of PPB formation, the TON1 RECRUITMENT MOTIF (TRM) and IQ67 DOMAIN (IQD) families. Both families share hallmarks of disordered scaffold proteins. Interactions of IQDs and TRMs with multiple binding partners, including the microtubule severing KATANIN1, may provide a molecular framework to coordinate PPB formation, maturation, and disassembly.
Publikation
This contribution reports on a meeting of plant cytoskeleton scientists-the European Plant Cytoskeletal Club 2023 conference.
Publikation
Tomato (Solanum lycopersicum) fruit shape is related to microtubule organization and the activity of microtubule-associated proteins (MAPs). However, insights into the mechanism of fruit shape formation from a cell biology perspective remain limited. Analysis of the tissue expression profiles of different microtubule regulators revealed that functionally distinct classes of MAPs, including members of the plant-specific MICROTUBULE-ASSOCIATED PROTEIN 70 (MAP70) and IQ67 DOMAIN (IQD, also named SUN in tomato) families, are differentially expressed during fruit development. SlMAP70-1–3 and SlIQD21a are highly expressed during fruit initiation, which relates to the dramatic microtubule pattern rearrangements throughout this developmental stage of tomato fruits. Transgenic tomato lines overexpressing SlMAP70-1 or SlIQD21a produced elongated fruits with reduced cell circularity and microtubule anisotropy, while their loss-of-function mutants showed the opposite phenotype, harboring flatter fruits. Fruits were further elongated in plants coexpressing both SlMAP70-1 and SlIQD21a. We demonstrated that SlMAP70s and SlIQD21a physically interact and that the elongated fruit phenotype is likely due to microtubule stabilization induced by the SlMAP70–SlIQD21a interaction. Together, our results identify SlMAP70 proteins and SlIQD21a as important regulators of fruit elongation and demonstrate that manipulating microtubule function during early fruit development provides an effective approach to alter fruit shape.
Preprints
The shape of tomato fruits is closely correlated to microtubule organization and the activity of microtubule associated proteins (MAP), but insights into the mechanism from a cell biology perspective are still largely elusive. Analysis of tissue expression profiles of different microtubule regulators revealed that functionally distinct classes of MAPs are highly expressed during fruit development. Among these, several members of the plant-specific MAP70 family are preferably expressed at the initiation stage of fruit development. Transgenic tomato lines overexpressing SlMAP70 produced elongated fruits that show reduced cell circularity and microtubule anisotropy, while SlMAP70 loss-of-function mutant showed an opposite effect with flatter fruits. Microtubule anisotropy of fruit endodermis cells exhibited dramatic rearrangement during tomato fruit development, and SlMAP70-1 is likely implicated in cortical microtubule organization and fruit elongation throughout this stage by interacting with SUN10/SlIQD21a. The expression of SlMAP70 (or co-expression of SlMAP70 and SUN10/SlIQD21a) induces microtubule stabilization and prevents its dynamic rearrangement, both activities are essential for fruit shape establishment after anthesis. Together, our results identify SlMAP70 as a novel regulator of fruit elongation, and demonstrate that manipulating microtubule stability and organization at the early fruit developmental stage has a strong impact on fruit shape.
Publikation
Arabidopsis seeds release large capsules of mucilaginous polysaccharides, which are shaped by an intricate network of cellulosic microfibrils. Cellulose synthase complexes are guided by the microtubule cytoskeleton, but it is unclear which proteins mediate this process in the seed coat epidermis. Using reverse genetics, we identified IQ67 DOMAIN 9 (IQD9) and KINESIN LIGHT CHAIN-RELATED 1 (KLCR1) as two highly expressed genes during seed development and comprehensively characterized their roles in cell wall polysaccharide biosynthesis. Mutations in IQD9 as well as in KLCR1 lead to compact mucilage capsules with aberrant cellulose distribution, which can be rescued by transgene complementation. IQD9 physically interacts with KLCR1 and localizes to cortical MTs to maintain their organization in SCE cells. IQD9 as well as a previously identified TONNEAU1 (TON1) RECRUITING MOTIF 4 (TRM4) protein act to maintain cellulose synthase velocity. Our results demonstrate that IQD9, KLCR1 and TRM4 are MT-associated proteins that are required for seed mucilage architecture. This study provides the first direct evidence that members of the IQD, KLCR and TRM families have overlapping roles in cell wall biosynthesis. Therefore, SCE cells provide an attractive system to further decipher the complex genetic regulation of polarized cellulose deposition.