The conserved eukaryotic protein SGT1 (for Suppressor of G2 allele of skp1) has characteristics of an HSP90 (for heat shock protein 90 kD) cochaperone and in plants regulates hormone responses and Resistance gene–triggered immunity. We affinity-purified SGT1-interacting proteins from Arabidopsis thaliana leaf extracts and identified by mass spectrometry cytosolic heat shock cognate 70 (HSC70) chaperones as the major stable SGT1 interactors. Arabidopsis SGT1a and SGT1b proteins associate with HSC70 in vivo and distribute with HSC70 in the cytosol and nucleus. An intact C-terminal SGT1-specific (SGS) domain that is required for all known SGT1b functions in immunity and development is needed for HSC70 interaction and for the nuclear accumulation of SGT1b. Interaction assays of transiently expressed proteins or their domains in Nicotiana benthamiana point to a role of SGT1 as a HSC70 cofactor. Expression of two HSC70 isoforms is upregulated by pathogen challenge, and while loss of function of individual cytosolic HSC70 genes has no defense phenotype, HSC70-1 overexpression disables resistance to virulent and avirulent pathogens. Moreover, mutations in SGT1b lead to a similar degree of heat shock tolerance as deregulation of HSC70-1. We conclude that an HSC70-SGT1 chaperone complex is important for multiple plant environmental responses and that the evolutionarily conserved SGS domain of SGT1 is a key determinant of the HSC70–SGT1 association.
Publikation
Wirthmueller, L.; Zhang, Y.; Jones, J. D. G.; Parker, J. E.;Nuclear Accumulation of the Arabidopsis Immune Receptor RPS4 Is Necessary for Triggering EDS1-Dependent DefenseCurr. Biol.172023-2029(2007)DOI: 10.1016/j.cub.2007.10.042
Recognition of specific pathogen molecules inside the cell by nucleotide-binding domain and leucine-rich repeat (NB-LRR) receptors constitutes an important layer of innate immunity in plants [1]. Receptor activation triggers host cellular reprogramming involving transcriptional potentiation of basal defenses and localized programmed cell death 1, 2, 3. The sites and modes of action of NB-LRR receptors are, however, poorly understood. Arabidopsis Toll/Interleukin-1 (TIR) type NB-LRR receptor RPS4 recognizes the bacterial type III effector AvrRps4 [4]. We show that epitope-tagged RPS4 expressed under its native regulatory sequences distributes between endomembranes and nuclei in healthy and AvrRps4-triggered tissues. RPS4 accumulation in the nucleus, mediated by a bipartite nuclear localization sequence (NLS) at its C terminus, is necessary for triggering immunity through authentic activation by AvrRps4 in Arabidopsis or as an effector-independent “deregulated” receptor in tobacco. A strikingly conserved feature of TIR-NB-LRR receptors is their recruitment of the nucleocytoplasmic basal-defense regulator EDS1 in resistance to diverse pathogens 5, 6. We find that EDS1 is an indispensable component of RPS4 signaling and that it functions downstream of RPS4 activation but upstream of RPS4-mediated transcriptional reprogramming in the nucleus.
Publikation
Cheng, Y. T.; Germain, H.; Wiermer, M.; Bi, D.; Xu, F.; García, A. V.; Wirthmueller, L.; Després, C.; Parker, J. E.; Zhang, Y.; Li, X.;Nuclear Pore Complex Component MOS7/Nup88 Is Required for Innate Immunity and Nuclear Accumulation of Defense Regulators in ArabidopsisPlant Cell212503-2516(2009)DOI: 10.1105/tpc.108.064519
Plant immune responses depend on dynamic signaling events across the nuclear envelope through nuclear pores. Nuclear accumulation of certain resistance (R) proteins and downstream signal transducers are critical for their functions, but it is not understood how these processes are controlled. Here, we report the identification, cloning, and analysis of Arabidopsis thalianamodifier of snc1,7 (mos7-1), a partial loss-of-function mutation that suppresses immune responses conditioned by the autoactivated R protein snc1 (for suppressor of npr1-1, constitutive 1). mos7-1 single mutant plants exhibit defects in basal and R protein–mediated immunity and in systemic acquired resistance but do not display obvious pleiotropic defects in development, salt tolerance, or plant hormone responses. MOS7 is homologous to human and Drosophila melanogaster nucleoporin Nup88 and resides at the nuclear envelope. In animals, Nup88 attenuates nuclear export of activated NF-κB transcription factors, resulting in nuclear accumulation of NF-κB. Our analysis shows that nuclear accumulation of snc1 and the defense signaling components Enhanced Disease Susceptibility 1 and Nonexpresser of PR genes 1 is significantly reduced in mos7-1 plants, while nuclear retention of other tested proteins is unaffected. The data suggest that specifically modulating the nuclear concentrations of certain defense proteins regulates defense outputs.
Publikation
Balcerowicz, M.; Fittinghoff, K.; Wirthmueller, L.; Maier, A.; Fackendahl, P.; Fiene, G.; Koncz, C.; Hoecker, U.;Light exposure of Arabidopsis seedlings causes rapid de-stabilization as well as selective post-translational inactivation of the repressor of photomorphogenesis SPA2Plant J.65712-723(2011)DOI: 10.1111/j.1365-313X.2010.04456.x
The COP1/SPA complex acts as an E3 ubiquitin ligase to repress photomorphogenesis by targeting activators of the light response for degradation. Genetic analysis has shown that the four members of the SPA gene family (SPA1–SPA4) have overlapping but distinct functions. In particular, SPA1 and SPA2 differ in that SPA1 encodes a potent repressor in light‐ and dark‐grown seedlings, but SPA2 fully loses its function when seedlings are exposed to light, indicating that SPA2 function is hyper‐inactivated by light. Here, we have used chimeric SPA1/SPA2 constructs to show that the distinct functions of SPA1 and SPA2 genes in light‐grown seedlings are due to the SPA protein sequences and independent of the SPA promoter sequences. Biochemical analysis of SPA1 and SPA2 protein levels shows that light exposure leads to rapid proteasomal degradation of SPA2, and, more weakly, of SPA1, but not of COP1. This suggests that light inactivates the COP1/SPA complex partly by reducing SPA protein levels. Although SPA2 was more strongly degraded than SPA1, this was not the sole reason for the lack of SPA2 function in the light. We found that the SPA2 protein is inherently incapable of repressing photomorphogenesis in light‐grown seedlings. The data therefore indicate that light inactivates the function of SPA2 through a post‐translational mechanism that eliminates the activity of the remaining SPA2 protein in the cell.
Pathogen effectors are intercepted by plant intracellular nucleotide binding–leucine-rich repeat (NB-LRR) receptors. However, processes linking receptor activation to downstream defenses remain obscure. Nucleo-cytoplasmic basal resistance regulator EDS1 (ENHANCED DISEASE SUSCEPTIBILITY1) is indispensible for immunity mediated by TIR (Toll–interleukin-1 receptor)–NB-LRR receptors. We show that Arabidopsis EDS1 molecularly connects TIR-NB-LRR disease resistance protein RPS4 recognition of bacterial effector AvrRps4 to defense pathways. RPS4-EDS1 and AvrRps4-EDS1 complexes are detected inside nuclei of living tobacco cells after transient coexpression and in Arabidopsis soluble leaf extracts after resistance activation. Forced AvrRps4 localization to the host cytoplasm or nucleus reveals cell compartment–specific RPS4-EDS1 defense branches. Although nuclear processes restrict bacterial growth, programmed cell death and transcriptional resistance reinforcement require nucleo-cytoplasmic coordination. Thus, EDS1 behaves as an effector target and activated TIR-NB-LRR signal transducer for defenses across cell compartments.
Publikation
Wirthmueller, L.; Jones, J. D.; Banfield, M. J.;Crystallization and preliminary X-ray analysis of the RXLR-type effector RXLR3 from the oomycete pathogen Hyaloperonospora arabidopsidisActa Crystallogr. F671417-1420(2011)DOI: 10.1107/S1744309111035901
Manipulating defence responses in infected host cells is a prerequisite for filamentous plant pathogens to complete their life cycle on infected host plants. During infection of its host Arabidopsis thaliana, the oomycete pathogen Hyaloperonospora arabidopsidis secretes numerous RXLR-type effector proteins, some of which are translocated into host cells. RXLR-type effectors share conserved N-terminal translocation motifs but show high diversity in their C-terminal `effector domains' that manipulate host defence mechanisms. Therefore, obtaining structural information on the effector domains of RXLR-type effectors will contribute to elucidating their molecular-virulence functions in infected host cells. Here, the expression, purification and crystallization of the effector domain of RXLR3 from H. arabidopsidis isolate Waco9 are reported. The crystals belonged to space group P21212, with unit-cell parameters a = 61.49, b = 27.99, c = 37.59 Å. X-ray data were collected to a resolution of 1.8 Å from a single crystal using synchrotron radiation.
Publikation
Caillaud, M.-. C.; Wirthmueller, L.; Fabro, G.; Piquerez, S. J. M.; Asai, S.; Ishaque, N.; Jones, J. D. G.;Mechanisms of Nuclear Suppression of Host Immunity by Effectors from the Arabidopsis Downy Mildew Pathogen Hyaloperonospora arabidopsidis (Hpa)Cold Spring Harb. Symp. Quant. Biol.77285-293(2012)DOI: 10.1101/sqb.2012.77.015115
Filamentous phytopathogens form sophisticated intracellular feeding structures called haustoria in plant cells. Pathogen effectors are likely to play a role in the establishment and maintenance of haustoria additional to their more characterized role of suppressing plant defense. Recent studies suggest that effectors may manipulate host transcription or other nuclear regulatory components for the benefit of pathogen development. However, the specific mechanisms by which these effectors promote susceptibility remain unclear. Of two recent screenings, we identified 15 nuclear-localized Hpa effectors (HaRxLs) that interact directly or indirectly with host nuclear components. When stably expressed in planta, nuclear HaRxLs cause diverse developmental phenotypes highlighting that nuclear effectors might interfere with fundamental plant regulatory mechanisms. Here, we report recent advances in understanding how a pathogen can manipulate nuclear processes in order to cause disease.
Publikation
Wirthmueller, L.; Banfield, M. J.;mADP-RTs: versatile virulence factors from bacterial pathogens of plants and mammalsFront. Plant Sci.3142(2012)DOI: 10.3389/fpls.2012.00142
Mono ADP-ribosyltransferases (mADP-RTs) are a family of enzymes that cleave NAD+ and covalently attach the ADP-ribosyl moiety to target proteins. mADP-RTs are well established as important virulence factors of bacteria that infect mammals. Cholera toxin, pertussis toxin, and diphtheria toxin are three of the best-known examples of mADP-RTs. They modify host target proteins in order to promote infection and/or killing of the host cell. Despite low sequence similarity at the primary amino acid level, mADP-RTs share a conserved core catalytic fold and structural biology has made important contributions to elucidating how mADP-RTs modify mammalian host targets. Recently, mADP-RTs were shown to be present in plant pathogenic bacteria, suggesting that mADP-RTs are also important virulence factors of plant pathogens. Crystal structures of plant pathogenic bacterial mADP-RTs are also now available. Here we review the structure/function of mADP-RTs from pathogens of mammals and plants, highlighting both commonalities and differences.
Publikation
Wirthmueller, L.; Maqbool, A.; Banfield, M. J.;On the front line: structural insights into plant–pathogen interactionsNat. Rev. Microbiol.11761-776(2013)DOI: 10.1038/nrmicro3118
Over the past decade, considerable advances have been made in understanding the molecular mechanisms that underpin the arms race between plant pathogens and their hosts. Alongside genomic, bioinformatic, proteomic, biochemical and cell biological analyses of plant–pathogen interactions, three-dimensional structural studies of virulence proteins deployed by pathogens to promote infection, in some cases complexed with their plant cell targets, have uncovered key insights into the functions of these molecules. Structural information on plant immune receptors, which regulate the response to pathogen attack, is also starting to emerge. Structural studies of bacterial plant pathogen–host systems have been leading the way, but studies of filamentous plant pathogens are gathering pace. In this Review, we summarize the key developments in the structural biology of plant pathogen–host interactions.
Publikation
Wirthmueller, L.; Roth, C.; Banfield, M. J.; Wiermer, M.;Hop-on hop-off: importin-α-guided tours to the nucleus in innate immune signalingFront. Plant Sci.4149(2013)DOI: 10.3389/fpls.2013.00149
Nuclear translocation of immune regulatory proteins and signal transducers is an essential process in animal and plant defense signaling against pathogenic microbes. Import of proteins containing a nuclear localization signal (NLS) into the nucleus is mediated by nuclear transport receptors termed importins, typically dimers of a cargo-binding α-subunit and a β-subunit that mediates translocation through the nuclear pore complex. Here, we review recent reports of importin-α cargo specificity and mutant phenotypes in plant- and animal–microbe interactions. Using homology modeling of the NLS-binding cleft of nine predicted Arabidopsis α-importins and analyses of their gene expression patterns, we discuss functional redundancy and specialization within this transport receptor family. In addition, we consider how pathogen effector proteins that promote infection by manipulating host cell nuclear processes might compete with endogenous cargo proteins for nuclear uptake.