- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Publikation
Publikation
Diese Seite wurde zuletzt am 06 Jun 2012 10 May 2012 geändert.
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikation
The resistance gene analogue (RGA) pic19 in maize, a candidate for sugarcane mosaic virus (SCMV) resistance gene (R gene) Scmv1, was used to screen a maize BAC library to identify homologous sequences in the maize genome and to investigate their genomic organisation. Fifteen positive BAC clones were identified and could be classified into five physically independent contigs consisting of overlapping clones. Genetic mapping clustered three contigs into the same genomic region as Scmv1 on chromosome 6S. The two remaining contigs mapped to the same region as a QTL for SCMV resistance on chromosome 1. Thus, RGAs mapping to a target region can be successfully used to identify further-linked candidate sequences. The pic19 homologous sequences of these clones revealed a sequence similarity of 94–98% on the nucleotide level. The high sequence similarity reveals potential problems for the use of RGAs as molecular markers. Their application in marker-assisted selection (MAS) and the construction of high-density genetic maps is complicated by the existence of closely linked homologues resulting in 'ghost' marker loci analogous to 'ghost' QTLs. Therefore, implementation of genomic library screening, including genetic mapping of potential homologues, seems necessary for the safe application of RGA markers in MAS and gene isolation.
Publikation
Quantitative trait loci (QTLs) and bulked segregant analyses (BSA) identified the major genes Scmv1 on chromosome 6 and Scmv2 on chromosome 3, conferring resistance against sugarcane mosaic virus (SCMV) in maize. Both chromosome regions were further enriched for SSR and AFLP markers by targeted bulked segregant analysis (tBSA) in order to identify and map only markers closely linked to either Scmv1 or Scmv2. For identification of markers closely linked to the target genes, symptomless individuals of advanced backcross generations BC5 to BC9 were employed. All AFLP markers, identified by tBSA using 400 EcoRI/MseI primer combinations, mapped within both targeted marker intervals. Fourteen SSR and six AFLP markers mapped to the Scmv1 region. Eleven SSR and 18 AFLP markers were located in the Scmv2 region. Whereas the linear order of SSR markers and the window size for the Scmv2 region fitted well with publicly available genetic maps, map distances and window size differed substantially for the Scmv1 region on chromosome 6. A possible explanation for the observed discrepancies is the presence of two closely linked resistance genes in the Scmv1 region.
Publikation
Three previously published resistance gene analogues (RGAs), pic13, pic21 and pic19, were mapped in relation to sugarcane mosaic virus (SCMV) resistance genes (Scmv1, Scmv2) in maize. We cloned these RGAs from six inbreds including three SCMV-resistant lines (D21, D32, FAP1360A) and three SCMV-susceptible lines (D145, D408, F7). Pairwise sequence alignments among the six inbreds revealed a frequency of one single nucleotide polymorphism (SNP) per 33 bp for the three RGAs, indicating a high degree of polymorphism and a high probability of success in converting RGAs into codominant cleaved amplified polymorphic sequence (CAPS) markers compared to other sequences. SNPs were used to develop CAPS markers for mapping of the three RGAs in relation to Scmv1 (chromosome 6) and Scmv2 (chromosome 3), and for pedigree analyses of resistant inbred lines. By genetic mapping pic21 was shown to be different from Scmv2, whereas pic19 and pic13 are still candidates for Scmv1 and Scmv2, respectively, due to genetic mapping and consistent restriction patterns of ancestral lines.
Publikation
In a previous study, bulked segregant analysis with amplified fragment length polymorphisms (AFLPs) identified several markers closely linked to the sugarcane mosaic virus resistance genes Scmv1 on chromosome 6 and Scmv2 on chromosome 3. Six AFLP markers (E33M61-2, E33M52, E38M51, E82M57, E84M59 and E93M53) were located on chromosome 3 and two markers (E33M61-1 and E35M62-1) on chromosome 6. Our objective in the present study was to sequence the respective AFLP bands in order to convert these dominant markers into more simple and reliable polymerase chain reaction (PCR)-based sequence-tagged site markers. Six AFLP markers resulted either in complete identical sequences between the six inbreds investigated in this study or revealed single nucleotide polymorphisms within the inbred lines and were, therefore, not converted. One dominant AFLP marker (E35M62-1) was converted into an insertion/deletion (indel) marker and a second AFLP marker (E33M61-2) into a cleaved amplified polymorphic sequence marker. Mapping of both converted PCR-based markers confirmed their localization to the same chromosome region (E33M61-2 on chromosome 3; E35M62-1 on chromosome 6) as the original AFLP markers. Thus, these markers will be useful for marker-assisted selection and facilitate map-based cloning of SCMV resistance genes.
Publikation
Sugarcane mosaic virus (SCMV) is an important disease in maize, which is emerging in Germany since 1983. Using this pest as a model for the inheritance of oligogenic traits, we clarified the genetic basis for resistance in early maturing European maize germplasm. Screening of 122 adapted European inbred lines identified three completely resistant lines, which were used for further analyses. The genetics of SCMV resistance was investigated by allelism tests in field experiments combined with QTL and bulked segregant analyses (BSA) on the marker level. QTL analyses revealed the presence of two major genes Scm1 and Scm2 plus three minor QTL. Involvement of Scm1 and Scm2 in the inheritance of SCMV resistance could be confirmed by BSA in a second cross. Breeders can make use of tightly linked STS markers for marker-assisted selection (MAS) as well as our SCMV resistant flint lines to improve their elite germplasm. Currently, recurrent backcrossing with phenotypic selection is the most appropriate and cost effective breeding method. With decreasing costs of DNA chip technology, MAS can be competitive with phenotypic selection in the near future. Further objectives of our research are the isolation and cloning of Scm1 and Scm2. To achieve this goal we follow two different approaches. (1) Positional cloning based on more than 500 AFLP primer combinations resulted in Scm1/Scm2 specific markers with a resolution of approximately 0.2 cM in the respective regions. (2) Resistance gene analogues (RGAs), cosegregating with the target genes are used to identify further candidate genes for transformation experiments.
Diese Seite wurde zuletzt am 06 Jun 2012 10 May 2012 geändert.