Die Plant Science Student Conference (PSSC) wird seit 20 Jahren im jährlichen Wechsel von Studierenden der beiden Leibniz-Institute IPK und IPB organisiert. Im Interview erläutern Christina Wäsch (IPK) und Carolin Apel (IPB),…
Über 600 Gäste kamen am 4. Juli ans IPB zur Langen Nacht, die Wissen schafft, um bei unserem Wissenschafts-Quiz-Parcours viel Neues zu erfahren und ihre Kenntnisse unter Beweis zu stellen. Unser Programm in diesem Jahr…
The main reasons for the limited clinical efficacy of the platinum(II)-based agent cisplatin include drug resistance and significant side effects. Due to their better stability, as well as the possibility to introduce biologically active ligands in their axial positions constructing multifunctional prodrugs, creating platinum(IV) complexes is a tempting strategy for addressing these limitations. Another strategy for developing chemotherapeutics with lower toxicity relies on the ability of nanoparticles to accumulate in greater quantities in tumor tissues through passive targeting. To combine the two approaches, three platinum(IV) conjugates based on a cisplatin scaffold containing in the axial positions derivatives of caffeic and ferulic acid were prepared and loaded into SBA-15 to produce the corresponding mesoporous silica nanoparticles (MSNs). The free platinum(IV) conjugates demonstrated higher or comparable activity with respect to cisplatin against different human breast cancer cell lines, while upon immobilization, superior antiproliferative activity with markedly increased cytotoxicity (more than 1000-fold lower IC50 values) compared to cisplatin was observed. Mechanistic investigations with the most potent conjugate, cisplatin-diacetyl caffeate (1), and the corresponding MSNs (SBA-15|1) in a 4T1 mouse breast cancer cell line showed that these compounds induce apoptotic cell death causing strong caspase activation. In vivo, in BALB/c mice, 1 and SBA-15|1 inhibited the tumor growth while decreasing the necrotic area and lowering the mitotic rate.
Publikation
Peters, K.; König-Ries, B.;Reference bioimaging to assess the phenotypic trait diversity of bryophytes within the family ScapaniaceaeSci. Data9598(2022)DOI: 10.1038/s41597-022-01691-x
Macro- and microscopic images of organisms are pivotal in biodiversity research. Despite that bioimages have manifold applications such as assessing the diversity of form and function, FAIR bioimaging data in the context of biodiversity are still very scarce, especially for difficult taxonomic groups such as bryophytes. Here, we present a high-quality reference dataset containing macroscopic and bright-field microscopic images documenting various phenotypic characters of the species belonging to the liverwort family of Scapaniaceae occurring in Europe. To encourage data reuse in biodiversity and adjacent research areas, we annotated the imaging data with machine-actionable metadata using community-accepted semantics. Furthermore, raw imaging data are retained and any contextual image processing like multi-focus image fusion and stitching were documented to foster good scientific practices through source tracking and provenance. The information contained in the raw images are also of particular interest for machine learning and image segmentation used in bioinformatics and computational ecology. We expect that this richly annotated reference dataset will encourage future studies to follow our principles.