Die Plant Science Student Conference (PSSC) wird seit 20 Jahren im jährlichen Wechsel von Studierenden der beiden Leibniz-Institute IPK und IPB organisiert. Im Interview erläutern Christina Wäsch (IPK) und Carolin Apel (IPB),…
Über 600 Gäste kamen am 4. Juli ans IPB zur Langen Nacht, die Wissen schafft, um bei unserem Wissenschafts-Quiz-Parcours viel Neues zu erfahren und ihre Kenntnisse unter Beweis zu stellen. Unser Programm in diesem Jahr…
A bottleneck in the development of new anti-cancer drugs is the recognition of their mode of action (MoA). We combined metabolomics and machine learning to predict MoAs of novel anti-proliferative drug candidates, focusing on human prostate cancer cells (PC-3). As proof of concept, we studied 38 drugs with known effects on 16 key processes of cancer metabolism, profiling low molecular weight intermediates of the central carbon and cellular energy metabolism (CCEM) by LC-MS/MS. These metabolic patterns unveiled distinct MoAs, enabling accurate MoA predictions for novel agents by machine learning. We validate the transferability of MoA predictions from PC-3 to two other cancer cell models and show that correct predictions are still possible, but at the expense of prediction quality. Furthermore, metabolic profiles of treated cells yield insights into intracellular processes, exemplified for drugs inducing different types of mitochondrial dysfunction. Specifically, we predict that pentacyclic triterpenes inhibit oxidative phosphorylation and affect phospholipid biosynthesis, as supported by respiration parameters, lipidomics, and molecular docking. Using biochemical insights from individual drug treatments, our approach offers new opportunities, including the optimization of combinatorial drug applications.
Publikation
Saoud, M.; Grau, J.; Rennert, R.; Mueller, T.; Yousefi, M.; Davari, M. D.; Hause, B.; Csuk, R.; Rashan, L.; Grosse, I.; Tissier, A.; Wessjohann, L. A.; Balcke, G. U.;Advancing anticancer drug discovery: leveraging metabolomics and machine learning for mode of action prediction by pattern recognitionAdvanced Science112404085(2024)DOI: 10.1002/advs.202404085
A bottleneck in the development of new anti‐cancer drugs is the recognition of their mode of action (MoA). Metabolomics combined with machine learning allowed to predict MoAs of novel anti‐proliferative drug candidates, focusing on human prostate cancer cells (PC‐3). As proof of concept, 38 drugs are studied with known effects on 16 key processes of cancer metabolism, profiling low molecular weight intermediates of the central carbon and cellular energy metabolism (CCEM) by LC‐MS/MS. These metabolic patterns unveiled distinct MoAs, enabling accurate MoA predictions for novel agents by machine learning. The transferability of MoA predictions based on PC‐3 cell treatments is validated with two other cancer cell models, i.e., breast cancer and Ewing\'s sarcoma, and show that correct MoA predictions for alternative cancer cells are possible, but still at some expense of prediction quality. Furthermore, metabolic profiles of treated cells yield insights into intracellular processes, exemplified for drugs inducing different types of mitochondrial dysfunction. Specifically, it is predicted that pentacyclic triterpenes inhibit oxidative phosphorylation and affect phospholipid biosynthesis, as confirmed by respiration parameters, lipidomics, and molecular docking. Using biochemical insights from individual drug treatments, this approach offers new opportunities, including the optimization of combinatorial drug applications.