Die Plant Science Student Conference (PSSC) wird seit 20 Jahren im jährlichen Wechsel von Studierenden der beiden Leibniz-Institute IPK und IPB organisiert. Im Interview erläutern Christina Wäsch (IPK) und Carolin Apel (IPB),…
Über 600 Gäste kamen am 4. Juli ans IPB zur Langen Nacht, die Wissen schafft, um bei unserem Wissenschafts-Quiz-Parcours viel Neues zu erfahren und ihre Kenntnisse unter Beweis zu stellen. Unser Programm in diesem Jahr…
The Human Proteome Organization (HUPO) Proteomics Standards Initiative (PSI) has been successfully developing guidelines, data formats, and controlled vocabularies (CVs) for the proteomics community and other fields supported by mass spectrometry since its inception 20 years ago. Here we describe the general operation of the PSI, including its leadership, working groups, yearly workshops, and the document process by which proposals are thoroughly and publicly reviewed in order to be ratified as PSI standards. We briefly describe the current state of the many existing PSI standards, some of which remain the same as when originally developed, some of which have undergone subsequent revisions, and some of which have become obsolete. Then the set of proposals currently being developed are described, with an open call to the community for participation in the forging of the next generation of standards. Finally, we describe some synergies and collaborations with other organizations and look to the future in how the PSI will continue to promote the open sharing of data and thus accelerate the progress of the field of proteomics.
Publikation
Chen, Y.; Liu, P.; Hoehenwarter, W.; Lin, J.;Proteomic and Phosphoproteomic Analysis of Picea wilsonii Pollen Development under Nutrient LimitationJ. Proteome Res.114180-4190(2012)DOI: 10.1021/pr300295m
The pollen tube is a tip-growing system that delivers sperm to the ovule and thus is essential for sexual plant reproduction. Sucrose and other microelements act as nutrients and signaling molecules through pathways that are not yet fully understood. Taking advantage of high-throughput liquid chromatography coupled to mass spectrometry (LC-MS), we performed a label-free shotgun proteomic analysis of pollen in response to nutrient limitation using mass accuracy precursor alignment. We compared 168 LC-MS analyses and more than 1 million precursor ions and could define the proteomic phenotypes of pollen under different conditions. In total, 166 proteins and 42 phosphoproteins were identified as differentially regulated. These proteins are involved in a variety of signaling pathways, providing new insights into the multifaceted mechanism of nutrient function. The phosphorylation of proteins involved in cytoskeleton dynamics was found to be specifically responsive to Ca2+ and sucrose deficiency, suggesting that sucrose and extracellular Ca2+ influx are necessary for the maintenance of cytoskeleton polymerization. Sucrose limitation leads to widespread accumulation of proteins involved in carbohydrate metabolism and protein degradation. This highlights the wide range of metabolic and cellular processes that are modulated by sucrose but complicates dissection of the signaling pathways.