Die Plant Science Student Conference (PSSC) wird seit 20 Jahren im jährlichen Wechsel von Studierenden der beiden Leibniz-Institute IPK und IPB organisiert. Im Interview erläutern Christina Wäsch (IPK) und Carolin Apel (IPB),…
Über 600 Gäste kamen am 4. Juli ans IPB zur Langen Nacht, die Wissen schafft, um bei unserem Wissenschafts-Quiz-Parcours viel Neues zu erfahren und ihre Kenntnisse unter Beweis zu stellen. Unser Programm in diesem Jahr…
Type 2 diabetes mellitus (T2DM) is a complex group of disorders, characterized by hyperglycemia, insulin resistance and insulin deficiency. In human blood, hyperglycemia ultimately results in the enhancement of glycation – a posttranslational modification formed by the interaction of protein amino groups with glucose. The resulting fructosamines (Amadori compounds) readily undergo further degradation resulting in advanced glycation end products (AGEs), known to be pro-inflammatory in humans. These compounds are highly heterogeneous and characteristic of advanced stages of the disease, whereas fructosamines are recognized markers of early diabetes stages (HbA1C, glycated albumin). Recently, individual plasma protein glycation sites were proposed as promising T2DM biomarkers sensitive to short-term fluctuations of plasma glucose. However, corresponding absolute quantification strategies, applicable in regular clinical practice, are still not established. Therefore, here we propose a new analytical approach aiming at reproducible and precise quantification of multiple glycated peptides in human plasma tryptic digests. Thereby, the standard peptides comprised a 13C,15N-labeled lysyl residue, a dabsyl moiety for determination of standard amounts, and a cleavable linker. Known amounts of these peptides were spiked to plasma samples prior to tryptic digestion, quantification relying on stable isotope dilution. The method was demonstrated to be applicable for quantification of individual glycated sites in T2DM patients and non-diabetic controls.
Publikation
Farag, M. A.; Ammar, N. M.; Kholeif, T. E.; Metwally, N. S.; El-Sheikh, N. M.; Wessjohann, L. A.; Abdel-Hamid, A. Z.;Rats’ urinary metabolomes reveal the potential roles of functional foods and exercise in obesity managementFood Funct.8985-996(2017)DOI: 10.1039/C6FO01753C
The complexity of the metabolic changes in obese individuals still presents a challenge for the understanding of obesity-related metabolic disruptions and for obesity management. In this study, a gas chromatography mass spectrometry (GC-MS) based metabolomics approach targeting urine metabolism has been applied to assess the potential roles of functional foods and exercise for obesity management in rats. Male albino rats diagnosed as obese via histopathology and biochemical assays were administered functional foods in common use for obesity management including pomegranate, grapefruit, and red cabbage juice extracts in parallel with swimming exercise. Urine samples were collected from these rats, and likewise from healthy control animals, for metabolite analysis using (GC-MS) coupled to multivariate data analysis. The results revealed a significant elevation in oxalate and phosphate levels in obese rat urine concurrent with lower lactate levels as compared to the control group. Furthermore, and to pinpoint the bioactive agents in the administered functional foods, ultra performance liquid chromatography (UPLC) coupled to high resolution time-of-flight mass spectrometry (TOF-MS) was employed for secondary metabolite profiling. The different phenolic classes found in the examined functional foods, viz. ellagitannins in pomegranate, flavanones in grapefruit and flavonols in red cabbage, are likely to mediate their anti-obesity effects. The results indicate that these functional foods and exercise were quite effective in reverting obesity-related metabolic disruptions back to normal status, as revealed by orthogonal partial least squares-discriminant analysis (OPLS-DA).