Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Zabel, S.; Brandt, W.; Porzel, A.; Athmer, B.; Kortbeek, R. W. J.; Bleeker, P. M.; Tissier, A.;Two novel 7-epi-zingiberene derivatives with biological activity from Solanum habrochaites are produced by a single cytochrome P450 monooxygenasebioRxiv(2020)DOI: 10.1101/2020.04.21.052571
Secretions from glandular trichomes potentially protect the plant against a variety of aggressors. In the tomato genus, wild species constitute a rich source of chemical diversity produced at the leaf surface by glandular trichomes. Previously, 7-epi-zingiberene produced in several accessions of Solanum habrochaites was found to confer resistance to whiteflies (Bemisia tabaci) and other insect pests. Here, we identify two derivatives of 7-epi-zingiberene from S. habrochaites that had not been reported as yet. We identified them as 9-hydroxy-zingiberene and 9-hydroxy-10,11-epoxyzingiberene. Using a combination of genetics and transcriptomics we identified a single cytochrome P450 oxygenase, ShCYP71D184 that carries out two successive oxidations to generate the two sesquiterpenoids. Bioactivity assays showed that only 9-hydroxy-10,11-epoxyzingiberene exhibits substantial toxicity against B. tabaci. In addition, both 9-hydroxy-zingiberene and 9-hydroxy-10,11-epoxyzingiberene display substantial growth inhibitory activities against a range of microorganisms, including Bacillus subtilis, Phytophtora infestans and Botrytis cinerea. Our work shows that trichome secretions from wild tomato species can provide protection against a wide variety of organisms. In addition, the availability of the genes encoding the enzymes for the pathway of 7-epi-zingiberene derivatives makes it possible to introduce this trait in cultivated tomato by precision breeding.
Publikation
Böhme, B.; Moritz, B.; Wendler, J.; Hertel, T. C.; Ihling, C.; Brandt, W.; Pietzsch, M.;Enzymatic activity and thermoresistance of improved microbial transglutaminase variantsAmino Acids52313-326(2020)DOI: 10.1007/s00726-019-02764-9
Microbial transglutaminase (MTG, EC 2.3.2.13) of Streptomyces mobaraensis is widely used in industry for its ability to synthesize isopeptide bonds between the proteinogenic side chains of glutamine and lysine. The activated wild-type enzyme irreversibly denatures at 60 °C with a pseudo-first-order kinetics and a half-life time (t1/2) of 2 min. To increase the thermoresistance of MTG for higher temperature applications, we generated 31 variants based on previous results obtained by random mutagenesis, DNA shuffling and saturation mutagenesis. The best variant TG16 with a specific combination of five of seven substitutions (S2P, S23Y, S24 N, H289Y, K294L) shows a 19-fold increased half-life at 60 °C (t1/2 = 38 min). As measured by differential scanning fluorimetry, the transition point of thermal unfolding was increased by 7.9 °C. Also for the thermoresistant variants, it was shown that inactivation process follows a pseudo-first-order reaction which is accompanied by irreversible aggregation and intramolecular self-crosslinking of the enzyme. Although the mutations are mostly located on the surface of the enzyme, kinetic constants determined with the standard substrate CBZ-Gln-Gly-OH revealed a decrease in KM from 8.6 mM (± 0.1) to 3.5 mM (± 0.1) for the recombinant wild-type MTG and TG16, respectively. The improved performance of TG16 at higher temperatures is exemplary demonstrated with the crosslinking of the substrate protein β-casein at 60 °C. Using molecular dynamics simulations, it was shown that the increased thermoresistance is caused by a higher backbone rigidity as well as increased hydrophobic interactions and newly formed hydrogen bridges.
Publikation
Jouda, J.-B.; Njoya, E. M.; Fobofou, S. A. T.; Zhou, Z. Y.; Qiang, Z.; Mbazoa, C. D.; Brandt, W.; Zhang, G.-l.; Wandji, J.; Wang, F.;Natural Polyketides Isolated from the Endophytic Fungus
Phomopsis sp. CAM212 with a Semisynthetic Derivative Downregulating
the ERK/IκBα Signaling PathwaysPlanta Med.861032-1042(2020)DOI: 10.1055/a-1212-2930
AbstractThree previously undescribed natural products, phomopsinin A – C
(1 – 3), together with three known compounds, namely,
cis-hydroxymellein (4), phomoxanthone A (5) and
cytochalasin L-696,474 (6), were isolated from the solid culture of
Phomopsis sp. CAM212, an endophytic fungus obtained from Garcinia
xanthochymus. Their structures were determined on the basis of
spectroscopic data, including IR, NMR, and MS. The absolute configurations of
1 and 2 were assigned by comparing their experimental and
calculated ECD spectra. Acetylation of compound 1 yielded 1a, a
new natural product derivative that was tested together with other isolated
compounds on lipopolysaccharide-stimulated RAW 264.7 cells. Cytochalasin
L-696,474 (6) was found to significantly inhibit nitric oxide production,
but was highly cytotoxic to the treated cells, whereas compound 1
slightly inhibited nitric oxide production, which was not significantly
different compared to lipopolysaccharide-treated cells. Remarkably, the
acetylated derivative of 1, compound 1a, significantly inhibited
nitric oxide production with an IC50 value of 14.8 µM and no
cytotoxic effect on treated cells, thereby showing the importance of the acetyl
group in the anti-inflammatory activity of 1a. The study of the mechanism
of action revealed that 1a decreases the expression of inducible nitric
oxide synthase, cyclooxygenase 2, and proinflammatory cytokine IL-6 without an
effect on IL-1β expression. Moreover, it was found that 1a exerts
its anti-inflammatory activity in lipopolysaccharide-stimulated RAW 264.7
macrophage cells by downregulating the activation of ERK1/2 and by preventing
the translocation of nuclear factor κB. Thus, derivatives of phomopsinin
A (1), such as compound 1a, could provide new anti-inflammatory
leads.
Publikation
Holzmeyer, L.; Hartig, A.-K.; Franke, K.; Brandt, W.; Muellner-Riehl, A. N.; Wessjohann, L. A.; Schnitzler, J.;Evaluation of plant sources for antiinfective lead compound discovery by correlating phylogenetic, spatial, and bioactivity dataProc. Natl. Acad. Sci. U.S.A.11712444-12451(2020)DOI: 10.1073/pnas.1915277117
The continued high rates of using antibiotics in healthcare and livestock, without sufficient new compounds reaching the market, has led to a dramatic increase in antimicrobial resistance, with multidrug-resistant bacteria emerging as a major public health threat worldwide. Because the vast majority of antiinfectives are natural products or have originated from them, we assessed the predictive power of plant molecular phylogenies and species distribution modeling in the search for clades and areas which promise to provide a higher probability of delivering new antiinfective compound leads. Our approach enables taxonomically and spatially targeted bioprospecting and supports the battle against the global antimicrobial crisis.