Dem IPB wird erneut ein beispielhaftes Handeln im Sinne einer chancengleichheitsorientierten Personal- und Organisationspolitik bescheinigt. Das Institut erhält zum 6. Mal in Folge das TOTAL E-QUALITY…
Die Plant Science Student Conference (PSSC) wird seit 20 Jahren im jährlichen Wechsel von Studierenden der beiden Leibniz-Institute IPK und IPB organisiert. Im Interview erläutern Christina Wäsch…
Research data is an essential part of research and almost every publication in chemistry. The data itself can be valuable for reuse if sustainably deposited, annotated and archived. Thus, it is important to publish data following the FAIR principles, to make it findable, accessible, interoperable and reusable not only for humans but also in machine-readable form. This also improves transparency and reproducibility of research findings and fosters analytical work with scientific data to generate new insights, being only accessible with manifold and diverse datasets. Research data requires complete and informative metadata and use of open data formats to obtain interoperable data. Generic data formats like AnIML and JCAMP-DX have been used for many applications. Special formats for some analytical methods are already accepted, like mzML for mass spectrometry or nmrML and NMReDATA for NMR spectroscopy data. Other methods still lack common standards for data. Only a joint effort of chemists, instrument and software vendors, publishers and infrastructure maintainers can make sure that the analytical data will be of value in the future. In this review, we describe existing data formats in analytical chemistry and introduce guidelines for the development and use of standardized and open data formats.
Publikation
Otify, A. M.; Serag, A.; Porzel, A.; Wessjohann, L. A.; Farag, M. A.;NMR metabolome-based classification of Cymbopogon Species: a prospect for phyto-equivalency of its different accessions using chemometric toolsFood Analytical Methods152095-2106(2022)DOI: 10.1007/s12161-022-02257-8
Cymbopogon species are widely distributed worldwide and known for their high essential oil content with potential commercial and medicinal benefits justifying for their inclusion in food and cosmetics. Most species received scant characterization regarding their full complement of bioactive constituents necessary to explain their medicinal activities. In this study, the metabolite profiles of 5 Cymbopogon species, C. citratus, C. flexuosus, C. procerus, C. martini, and C. nardus, were characterized via NMR-based metabolomics. The results of 13 shoot accessions revealed the identification and quantification of 23 primary and secondary metabolites belonging to various compound classes. Multivariate analyses were used for species classification, though found not successful in discrimination based on geographical origin. Nevertheless, C. citratus was found particularly enriched in neral, geranial, (E)-aconitic acid, isoorientin, and caffeic acid as the major characterizing metabolites compared to other species, while an unknown apigenin derivative appeared to discriminate C. martini. The high essential oil and phenolic content in C. citratus emphasizes its strong antioxidant activity, whereas (E)-aconitic acid accounts for its traditional use as insecticide. This study affords the first insight into metabolite compositional differences among Cymbopogon species. Moreover, antimicrobial, insecticidal, antidiabetic, and antioxidant compounds were identified that can be utilized as biomarkers for species authentication.