Dem IPB wird erneut ein beispielhaftes Handeln im Sinne einer chancengleichheitsorientierten Personal- und Organisationspolitik bescheinigt. Das Institut erhält zum 6. Mal in Folge das TOTAL E-QUALITY…
Die Plant Science Student Conference (PSSC) wird seit 20 Jahren im jährlichen Wechsel von Studierenden der beiden Leibniz-Institute IPK und IPB organisiert. Im Interview erläutern Christina Wäsch…
BackgroundLiquid chromatography coupled to mass spectrometry (LC/MS) is an important analytical technology for e.g. metabolomics experiments. Determining the boundaries, centres and intensities of the two-dimensional signals in the LC/MS raw data is called feature detection. For the subsequent analysis of complex samples such as plant extracts, which may contain hundreds of compounds, corresponding to thousands of features – a reliable feature detection is mandatory.ResultsWe developed a new feature detection algorithm centWave for high-resolution LC/MS data sets, which collects regions of interest (partial mass traces) in the raw-data, and applies continuous wavelet transformation and optionally Gauss-fitting in the chromatographic domain. We evaluated our feature detection algorithm on dilution series and mixtures of seed and leaf extracts, and estimated recall, precision and F-score of seed and leaf specific features in two experiments of different complexity.ConclusionThe new feature detection algorithm meets the requirements of current metabolomics experiments. centWave can detect close-by and partially overlapping features and has the highest overall recall and precision values compared to the other algorithms, matchedFilter (the original algorithm of XCMS) and the centroidPicker from MZmine. The centWave algorithm was integrated into the Bioconductor R-package XCMS and is available from http://www.bioconductor.org/
Publikation
Zöllner, F.; Neumann, S.; Kummert, F.; Sagerer, G.;Database driven test case generation for protein-protein dockingBioinformatics21683-684(2005)DOI: 10.1093/bioinformatics/bti061
Summary: We present a method for automatic test case generation for protein–protein docking. A consensus-type approach is proposed processing the whole PDB and classifying protein structures into complexes and unbound proteins by combining information from three different approaches (current PDB-at-a-glance classification, search of complexes by sequence identical unbound structures and chain naming). Out of this classification test cases are generated automatically. All calculations were run on the database. The information stored is available via a web interface. The user can choose several criteria for generating his own subset out of our test cases, e.g. for testing docking algorithms.Availability:http://bibiserv.techfak.uni-bielefeld.de/agt-sdp/