Dem IPB wird erneut ein beispielhaftes Handeln im Sinne einer chancengleichheitsorientierten Personal- und Organisationspolitik bescheinigt. Das Institut erhält zum 6. Mal in Folge das TOTAL E-QUALITY…
Die Plant Science Student Conference (PSSC) wird seit 20 Jahren im jährlichen Wechsel von Studierenden der beiden Leibniz-Institute IPK und IPB organisiert. Im Interview erläutern Christina Wäsch…
Toxicology has been an active research field for many decades, with academic, industrial and government involvement. Modern omics and computational approaches are changing the field, from merely disease-specific observational models into target-specific predictive models. Traditionally, toxicology has strong links with other fields such as biology, chemistry, pharmacology, and medicine. With the rise of synthetic and new engineered materials, alongside ongoing prioritisation needs in chemical risk assessment for existing chemicals, early predictive evaluations are becoming of utmost importance to both scientific and regulatory purposes. ELIXIR is an intergovernmental organisation that brings together life science resources from across Europe. To coordinate the linkage of various life science efforts around modern predictive toxicology, the establishment of a new ELIXIR Community is seen as instrumental. In the past few years, joint efforts, building on incidental overlap, have been piloted in the context of ELIXIR. For example, the EU-ToxRisk, diXa, HeCaToS, transQST, and the nanotoxicology community have worked with the ELIXIR TeSS, Bioschemas, and Compute Platforms and activities. In 2018, a core group of interested parties wrote a proposal, outlining a sketch of what this new ELIXIR Toxicology Community would look like. A recent workshop (held September 30th to October 1st, 2020) extended this into an ELIXIR Toxicology roadmap and a shortlist of limited investment-high gain collaborations to give body to this new community. This Whitepaper outlines the results of these efforts and defines our vision of the ELIXIR Toxicology Community and how it complements other ELIXIR activities.
Publikation
Abhishek, S.; Deeksha, W.; Nethravathi, K. R.; Davari, M. D.; Rajakumara, E.;Allosteric crosstalk in modular proteins: Function fine-tuning and drug designComp Struct Biotechnol J215003-5015(2023)DOI: 10.1016/j.csbj.2023.10.013
Modular proteins are regulatory proteins that carry out more than one function. These proteins upregulate or downregulate a biochemical cascade to establish homeostasis in cells. To switch the function or alter the efficiency (based on cellular needs), these proteins require different facilitators that bind to a site different from the catalytic (active/orthosteric) site, aka ‘allosteric site’, and fine-tune their function. These facilitators (or effectors) are allosteric modulators. In this Review, we have discussed the allostery, characterized them based on their mechanisms, and discussed how allostery plays an important role in the activity modulation and function finetuning of proteins. Recently there is an emergence in the discovery of allosteric drugs. We have also emphasized the role, significance, and future of allostery in therapeutic applications.