Dem IPB wird erneut ein beispielhaftes Handeln im Sinne einer chancengleichheitsorientierten Personal- und Organisationspolitik bescheinigt. Das Institut erhält zum 6. Mal in Folge das TOTAL E-QUALITY…
Die Plant Science Student Conference (PSSC) wird seit 20 Jahren im jährlichen Wechsel von Studierenden der beiden Leibniz-Institute IPK und IPB organisiert. Im Interview erläutern Christina Wäsch…
Tobacco (Nicotiana tabacum L.) plants were grown with and without the arbuscular mycorrhizal fungus, Glomus intraradices Schenk & Smith. High-performance liquid chromatographic analyses of methanolic extracts from mycorrhizal and non-mycorrhizal tobacco roots revealed marked fungus-induced changes in the patterns of UV-detectable products. The UV spectra of these products, obtained from an HPLC photodiode array detector, indicated the presence of several blumenol derivatives. The most predominant compound among these derivatives was spectroscopically identified as 13-hydroxyblumenol C 9-O-gentiobioside (“nicoblumin”), i.e. the 9-O-(6′-O-β-glucopyranosyl)-β-glucopyranoside of 13-hydroxy-6-(3-hydroxybutyl)-1,1,5-trimethyl-4-cyclohexen-3-one, a new natural product. This is the first report on the identification of blumenol derivatives in mycorrhizal roots of a non-gramineous plant.
Publikation
Maier, W.; Hammer, K.; Dammann, U.; Schulz, B.; Strack, D.;Accumulation of sesquiterpenoid cyclohexenone derivatives induced by an arbuscular mycorrhizal fungus in members of the PoaceaePlanta20236-42(1997)DOI: 10.1007/s004250050100
Sixty one members of the Poaceae, including various cereals, were grown in defined nutrient media with and without the arbuscular mycorrhizal (AM) fungus, Glomus intraradices Schenk & Smith. The roots of all species investigated were colonized by the AM fungus, however, to different degrees and independent of their systematic position. High-performance liquid chromatographic analyses of methanolic extracts from the roots of mycorrhizal and nonmycorrhizal species revealed dramatic changes in the patterns of UV-detectable products along with a widespread occurrence of AM-fungus-induced accumulation of sesquiterpenoid cyclohexenone derivatives. The latter occur most often in the tribes Poeae, Triticeae and Aveneae. Some additional control experiments on plant infection with pathogens (Gaeumannomyces graminis) and Drechslera sp.) or an endophyte (Fusarium sp.), as well as application of abiotic stress, proved that the metabolism of these terpenoids is part of a response pattern of many gramineous roots in their specific reaction to AM fungal colonization.