Dem IPB wird erneut ein beispielhaftes Handeln im Sinne einer chancengleichheitsorientierten Personal- und Organisationspolitik bescheinigt. Das Institut erhält zum 6. Mal in Folge das TOTAL E-QUALITY…
Die Plant Science Student Conference (PSSC) wird seit 20 Jahren im jährlichen Wechsel von Studierenden der beiden Leibniz-Institute IPK und IPB organisiert. Im Interview erläutern Christina Wäsch…
In flowering plants, the developing embryo consists of growing populations of cells whose fates are determined in a position-dependent manner to form the adult organism. Mutations in the FACKEL(FK) gene affect body organization of theArabidopsis seedling. We report that FK is required for cell division and expansion and is involved in proper organization of the embryo. We isolated FK by positional cloning. Expression analysis in embryos revealed that FK mRNA becomes localized to meristematic zones. FK encodes a predicted integral membrane protein related to the vertebrate lamin B receptor and sterol reductases across species, including yeast sterol C-14 reductase ERG24. We provide functional evidence that FK encodes a sterol C-14 reductase by complementation of erg24. GC/MS analysis confirmed that fk mutations lead to accumulation of intermediates in the biosynthetic pathway preceding the C-14 reductase step. Although fk represents a sterol biosynthetic mutant, the phenotype was not rescued by feeding with brassinosteroids (BRs), the only plant sterol signaling molecules known so far. We propose that synthesis of sterol signals in addition to BRs is important in mediating regulated cell growth and organization during embryonic development. Our results indicate a novel role for sterols in the embryogenesis of plants.
Publikation
Hinneburg, A.; Keim, D. A.; Brandt, W.;Clustering 3D-structures of small amino acid chains for detecting dependences from their sequential context in proteinsProc. IEEE International Symposium on Bio-Informatics and Biomedical Engineering43-49(2000)DOI: 10.1109/BIBE.2000.889588
In the past, a good number of rotamer libraries have been published, which allow a deeper understanding of the conformational behavior of amino acid residues in proteins. Since the number of available high-resolution X-ray protein structures has grown significantly over the last years, a more comprehensive analysis of the conformational behavior is possible today. In this paper, we present a method to compile a new class of rotamer libraries for detecting interesting relationships between residue conformations and their sequential context in proteins. The method is based on a new algorithm for clustering residue conformations. To demonstrate the effectiveness of our method, we apply our algorithm to a library consisting of all 8000 tripeptide fragments formed by the 20 native amino acids. The analysis shows some very interesting new results, namely that some specific tripeptide fragments show some unexpected conformation of residues instead of the highly preferred conformation. In the neighborhood of two asparagine residues, for example, threonine avoids the conformation which is most likely to occur otherwise. The new insights obtained by the analysis are important in understanding the formation and prediction of secondary structure elements and will consequently be crucial for improving the state-of-the-art of protein folding.