Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Crop yield loss due to flooding is a threat to food security. Submergence-induced hypoxia in plants results in stabilisation of group VII ETHYLENE RESPONSE FACTORS (ERF-VIIs), which aid survival under these adverse conditions. ERF-VII stability is controlled by the N-end rule pathway, which proposes that ERF-VII N-terminal cysteine oxidation in normoxia enables arginylation followed by proteasomal degradation. The PLANT CYSTEINE OXIDASEs (PCOs) have been identified as catalysts of this oxidation. ERF-VII stabilisation in hypoxia presumably arises from reduced PCO activity. We directly demonstrate that PCO dioxygenase activity produces Cys-sulfinic acid at the N-terminus of an ERF-VII peptide, which then undergoes efficient arginylation by an arginyl transferase (ATE1). This is the first molecular evidence showing N-terminal Cys-sulfinic acid formation and arginylation by N-end rule pathway components, and the first ATE1 substrate in plants. The PCOs and ATE1 may be viable intervention targets to stabilise N-end rule substrates, including ERF-VIIs to enhance submergence tolerance in agronomy.
Preprints
Trenner, J.; Poeschl, Y.; Grau, J.; Gogol-Döring, A.; Quint, M.; Delker, C.;Auxin-induced expression divergence between Arabidopsis species likely originates within the TIR1/AFB-AUX/IAA-ARF modulebioRxiv(2016)DOI: 10.1101/038422
Auxin is an essential regulator of plant growth and development and auxin signaling components are conserved among land plants. Yet, a remarkable degree of natural variation in physiological and transcriptional auxin responses has been described among Arabidopsis thaliana accessions. As intra-species comparisons offer only limited genetic variation, we here inspect the variation of auxin responses between A. thaliana and A. lyrata. This approach allowed the identification of conserved auxin response genes including novel genes with potential relevance for auxin biology. Furthermore, promoter divergences were analyzed for putative sources of variation. De novo motif discovery identified novel and variants of known elements with potential relevance for auxin responses, emphasizing the complex, and yet elusive, code of element combinations accounting for the diversity in transcriptional auxin responses. Furthermore, network analysis revealed correlations of inter-species differences in the expression of AUX/IAA gene clusters and classic auxin-related genes. We conclude that variation in general transcriptional and physiological auxin responses may originate substantially from functional or transcriptional variations in the TIR1/AFB, AUX/IAA, and ARF signaling network. In that respect, AUX/IAA gene expression divergence potentially reflects differences in the manner in which different species transduce identical auxin signals into gene expression responses.
Preprints
Mot, A. C.; Prell, E.; Klecker, M.; Naumann, C.; Faden, F.; Westermann, B.; Dissmeyer, N.;Real-time detection of PRT1-mediated ubiquitination via fluorescently labeled substrate probesbioRxiv(2016)DOI: 10.1101/062067
The N-end rule pathway has emerged as a major system for regulating protein functions by controlling their turn-over in medical, animal and plant sciences as well as agriculture. Although novel functions and enzymes of the pathway were discovered, ubiquitination mechanism and substrate specificity of N-end rule pathway E3 Ubiquitin ligases remained elusive. Taking the first discovered bona fide plant N-end rule E3 ligase PROTEOLYSIS1 (PRT1) as a model, we use a novel tool to molecularly characterize polyubiquitination live, in real-time.We gained mechanistic insights in PRT1 substrate preference and activation by monitoring live ubiquitination by using a fluorescent chemical probe coupled to artificial substrate reporters. Ubiquitination was measured by rapid in-gel fluorescence scanning as well as in real time by fluorescence polarization.Enzymatic activity, substrate specificity, mechanisms and reaction optimization of PRT1-mediated ubiquitination were investigated ad hoc in short time and with significantly reduced reagent consumption.We demonstrated for the first time that PRT1 is indeed an E3 ligase, which was hypothesized for over two decades. These results demonstrate that PRT1 has the potential to be involved in polyubiquitination of various substrates and therefore pave the way to understanding recently discovered phenotypes of prt1 mutants.
Preprints
Drost, H.-G.; Gabel, A.; Domazet-Lošo, T.; Quint, M.; Grosse, I.;Capturing Evolutionary Signatures in Transcriptomes with myTAIbioRxiv(2016)DOI: 10.1101/051565
Combining transcriptome data of biological processes or response to stimuli with evolutionary information such as the phylogenetic conservation of genes or their sequence divergence rates enables the investigation of evolutionary constraints on these processes or responses. Such phylotranscriptomic analyses recently unraveled that mid-developmental transcriptomes of fly, fish, and cress were dominated by evolutionarily conserved genes and genes under negative selection and thus recapitulated the developmental hourglass on the transcriptomic level. Here, we present a protocol for performing phylotranscriptomic analyses on any biological process of interest. When applying this protocol, users are capable of detecting different evolutionary constraints acting on different stages of the biological process of interest in any species. For each step of the protocol, modular and easy-to-use open-source software tools are provided, which enable a broad range of scientists to apply phylotranscriptomic analyses to a wide spectrum of biological questions.