Dem IPB wird erneut ein beispielhaftes Handeln im Sinne einer chancengleichheitsorientierten Personal- und Organisationspolitik bescheinigt. Das Institut erhält zum 6. Mal in Folge das TOTAL E-QUALITY…
Die Plant Science Student Conference (PSSC) wird seit 20 Jahren im jährlichen Wechsel von Studierenden der beiden Leibniz-Institute IPK und IPB organisiert. Im Interview erläutern Christina Wäsch…
Cultured cells of Eschscholzia californica respond to a yeast glycoprotein elicitor by producing benzophenanthridine alkaloids, which are excreted into the cell wall and the outer medium. These compounds, preferentially sanguinarine, are efficient phytoalexins because of their ability to intercalate double‐stranded DNA (dsDNA), penetrate membranes and inhibit various enzymes containing SH‐groups. Externally added sanguinarine is rapidly taken up by intact cells and converted to dihydrosanguinarine, which is substituted intracellularly according to the biosynthetic route. A 29.5 kDa soluble enzyme that catalyses the reduction of sanguinarine and chelerythrine by either NADPH or NADH has been isolated and purified to homogeneity. Benzophenanthridines that accumulate in the outer medium, mainly 10‐OH‐chelerythrine, chelirubine and macarpine, are converted by the isolated enzyme and by intact cells at much slower rates than sanguinarine. The cellular capacity of uptake and conversion of sanguinarine largely surpasses the rate of alkaloid production. We conclude that the sanguinarine produced by intact cells, after excretion and binding to cell wall elements, is rapidly reabsorbed and reduced to the less toxic dihydrosanguinarine, which then undergoes further biosynthetic reactions. This recycling process would allow the presence of the toxic phytoalexin at the cellular surface without taking the risk of injuring the producing cell.
Publikation
Weber, M.; Trampczynska, A.; Clemens, S.;Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleriPlant Cell Environ.29950-963(2006)DOI: 10.1111/j.1365-3040.2005.01479.x
Toxic effects of both essential and non‐essential heavy metals are well documented in plants. Very little is known, however, about their modes of toxicity, about tolerance mechanisms and the signalling cascades involved in mediating transcriptional responses to toxic metal excess. We analysed transcriptome changes upon Cd2+ and Cu2+ exposure in roots of Arabidopsis thaliana and the Cd2+‐hypertolerant metallophyte Arabidopsis halleri . Particularly, three categories of genes were identified with the help of this comparative approach: (1) common responses, which might indicate stable and functionally relevant changes conserved across plant species; (2) metallophyte‐specific responses as well as transcripts differentially regulated between the two species, representing candidate genes for Cd2+ hypertolerance; and (3) those specifically responsive to Cd2+ and therefore indicative of toxicity mechanisms or potentially involved in signalling cascades. Our data define, for instance, Arabidopsis core responses to Cd2+ and Cu2+. In addition, they suggest that Cd2+ exposure very rapidly results in apparent Zn deficiency, and they show the existence of highly specific Cd2+ responses and distinct signalling cascades. Array results were independently confirmed by real‐time quantitative PCR, thereby further validating cross‐species transcriptome analysis with oligonucleotide microarrays.