Dem IPB wird erneut ein beispielhaftes Handeln im Sinne einer chancengleichheitsorientierten Personal- und Organisationspolitik bescheinigt. Das Institut erhält zum 6. Mal in Folge das TOTAL E-QUALITY…
Die Plant Science Student Conference (PSSC) wird seit 20 Jahren im jährlichen Wechsel von Studierenden der beiden Leibniz-Institute IPK und IPB organisiert. Im Interview erläutern Christina Wäsch…
D’Eustacchio, D.; Centorame, M.; Fanfani, A.; Senczuk, G.; Jiménez-Alemán, G. H.; Vasco-Vidal, A.; Méndez, Y.; Ehrlich, A.; Wessjohann, L.; Francioso, A.;Iridoids and volatile pheromones of Tapinoma darioi ants: chemical differences to the closely related species Tapinoma magnumChemoecology2951-60(2019)DOI: 10.1007/s00049-018-00275-9
Tapinoma species, and more general dolichoderine ants, are able to produce a variety of volatile compounds they use as chemical defense, alarm, and communication pheromones. Among these, iridoids and volatile ketones are the predominant molecule classes produced by the anal glands of these ants. A recent taxonomic revision of the genus Tapinoma in Europe revealed that the supercolonial species Tapinoma nigerrimum consists of a complex of four cryptic species. Two of them, Tapinoma magnum and the newly described Tapinoma darioi, are closely related species that evolutionary diverged recently. In this work, we determine and characterize the chemical profile of pheromones and volatile compounds of two Tapinoma species. From a chemical point of view, T. darioi and T. magnum show both qualitative and quantitative differences in the pheromones produced, supporting the taxonomic revision of the T. nigerrimum complex. Our data confirm T. darioi and T. magnum as separate species also from a biochemical point of view demonstrating the value of chemotaxonomy as a suitable tool for integrative studies of species differentiation even for closely related taxa.
Publikation
Greff, A.; Porzel, A.; Schmidt, J.; Palfner, G.; Arnold, N.;Pigment pattern of the Chilean mushroom Dermocybe nahuelbutensis Garrido & E. HorakRec. Nat. Prod.11547-551(2017)DOI: 10.25135/rnp.69.17.01.027
Fruiting bodies of the Chilean mushroom Dermocybe nahuelbutenis Garrido & E. Horak (syn.: Cortinariusnahuelbutensis (Garrido & E. Horak) E. Valenz. & G. Moreno) were chemically investigated for the first time andafforded the new dimeric anthraqinone 7,7'-emodinphyscion (1) beside the know anthraquinones dermolutein (2),endocrocin (3), skyrin (4) and the dimeric pre-anthraquinone derivative flavomannin C (5). The chemotaxonomicsignificance of the pigments is discussed.
Publikation
Alresly, Z.; Lindequist, U.; Lalk, M.; Porzel, A.; Arnold, N.; Wessjohann, L. A.;Bioactive Triterpenes from the Fungus Piptoporus betulinusRec. Nat. Prod.10103-108(2016)
Phytochemical investigation of the ethyl acetate extract of the fruiting bodies from the basidiomycete Piptoporus betulinus led to the isolation of a new bioactive lanostane triterpene identified as 3 b -acetoxy-16-hydroxy-24-oxo-5α-lanosta-8- ene-21-oic acid (1). In addition, ten known triterpenes, polyporenic acid A (5), polyporenic acid C (4), three derivatives of polyporenic acid A (8, 10, 11), betulinic acid (3), betulin (2), ergosterol peroxide (6), 9,11-dehydroergosterol peroxide (7), and fomefficinic acid (9), were also isolated from the fungus. All isolated compounds were tested for antimicrobial activity against some Gram-positive and Gram-negative bacteria as well as against a fungal strain. The new triterpene and some of the other compounds showed antimicrobial activity against Gram-positive bacteria.
Publikation
Ali, N. A. A.; Wurster, M.; Arnold, N.; Lindequist, U.; Wessjohann, L.;Essential Oil Composition from Oleogum Resin of Soqotraen Commiphora kuaRec. Nat. Prod.270-75(2008)
The major constituents of the essential oil obtained by hydrodistillation from the oleogum resin of Commiphora kua Vollesen were identified by GC-MS. Sixteen constituents were detected from the essential oil, which constituted about (90.5%) of the total amount. Major constituents of the oil were α- cadinol (33.0%), g -cadinene (22.5%), d -cadinene (17.0%), isocaryophyllene (3.7%), allo-aromadendrene (2.8%), α-muurolene (2.7%), and α-humulene (2.4%). The Oil of Commiphora kua showed moderate antifungal activity against Cladosporium cucumerinum.