Dem IPB wird erneut ein beispielhaftes Handeln im Sinne einer chancengleichheitsorientierten Personal- und Organisationspolitik bescheinigt. Das Institut erhält zum 6. Mal in Folge das TOTAL E-QUALITY…
Die Plant Science Student Conference (PSSC) wird seit 20 Jahren im jährlichen Wechsel von Studierenden der beiden Leibniz-Institute IPK und IPB organisiert. Im Interview erläutern Christina Wäsch…
Peters, K.; König-Ries, B.;Reference bioimaging to assess the phenotypic trait diversity of bryophytes within the family ScapaniaceaeSci. Data9598(2022)DOI: 10.1038/s41597-022-01691-x
Macro- and microscopic images of organisms are pivotal in biodiversity research. Despite that bioimages have manifold applications such as assessing the diversity of form and function, FAIR bioimaging data in the context of biodiversity are still very scarce, especially for difficult taxonomic groups such as bryophytes. Here, we present a high-quality reference dataset containing macroscopic and bright-field microscopic images documenting various phenotypic characters of the species belonging to the liverwort family of Scapaniaceae occurring in Europe. To encourage data reuse in biodiversity and adjacent research areas, we annotated the imaging data with machine-actionable metadata using community-accepted semantics. Furthermore, raw imaging data are retained and any contextual image processing like multi-focus image fusion and stitching were documented to foster good scientific practices through source tracking and provenance. The information contained in the raw images are also of particular interest for machine learning and image segmentation used in bioinformatics and computational ecology. We expect that this richly annotated reference dataset will encourage future studies to follow our principles.
Publikation
Peters, K.; Gorzolka, K.; Bruelheide, H.; Neumann, S.;Computational workflow to study the seasonal variation of secondary metabolites in nine different bryophytesSci. Data5180179(2018)DOI: 10.1038/sdata.2018.179
In Eco-Metabolomics interactions are studied of non-model organisms in their natural environment and relations are made between biochemistry and ecological function. Current challenges when processing such metabolomics data involve complex experiment designs which are often carried out in large field campaigns involving multiple study factors, peak detection parameter settings, the high variation of metabolite profiles and the analysis of non-model species with scarcely characterised metabolomes. Here, we present a dataset generated from 108 samples of nine bryophyte species obtained in four seasons using an untargeted liquid chromatography coupled with mass spectrometry acquisition method (LC/MS). Using this dataset we address the current challenges when processing Eco-Metabolomics data. Here, we also present a reproducible and reusable computational workflow implemented in Galaxy focusing on standard formats, data import, technical validation, feature detection, diversity analysis and multivariate statistics. We expect that the representative dataset and the reusable processing pipeline will facilitate future studies in the research field of Eco-Metabolomics.