Dem IPB wird erneut ein beispielhaftes Handeln im Sinne einer chancengleichheitsorientierten Personal- und Organisationspolitik bescheinigt. Das Institut erhält zum 6. Mal in Folge das TOTAL E-QUALITY…
Die Plant Science Student Conference (PSSC) wird seit 20 Jahren im jährlichen Wechsel von Studierenden der beiden Leibniz-Institute IPK und IPB organisiert. Im Interview erläutern Christina Wäsch…
With respect to the mechanism of chaperonelike activity, we examined the behavior of haptoglobin under heat shock conditions. Secondary structure changes during heat treatment were followed by circular dichroism, Raman and infrared spectroscopy. A model of the haptoglobin tetramer, based on its sequence homology with serine proteases and the CCP modules, has been proposed. Sequence regions responsible for the chaperonelike activity were not fully identical with the region that takes part in formation of the hemoglobinhaptoglobin complex. We can postulate the presence of at least two different chaperonebinding sites on each haptoglobin heavy chain.
Publikation
Bachmann, A.; Hause, B.; Maucher, H.; Garbe, E.; Vörös, K.; Weichert, H.; Wasternack, C.; Feussner, I.;Jasmonate-Induced Lipid Peroxidation in Barley Leaves Initiated by Distinct 13-LOX Forms of ChloroplastsBiol. Chem.3831645-1657(2002)DOI: 10.1515/BC.2002.185
In addition to a previously characterized 13-lipoxygenase of 100 kDa encoded by LOX2:Hv:1 [Vörös et al., Eur. J. Biochem. 251 (1998), 36 44], two fulllength cDNAs (LOX2:Hv:2, LOX2:Hv:3) were isolated from barley leaves (Hordeum vulgare cv. Salome) and characterized. Both of them encode 13-lipoxygenases with putative target sequences for chloroplast import. Immunogold labeling revealed preferential, if not exclusive, localization of lipoxygenase proteins in the stroma. The ultrastructure of the chloroplast was dramatically altered following methyl jasmonate treatment, indicated by a loss of thylakoid membranes, decreased number of stacks and appearance of numerous osmiophilic globuli. The three 13-lipoxygenases are differentially expressed during treatment with jasmonate, salicylate, glucose or sorbitol. Metabolite profiling of free linolenic acid and free linoleic acid, the substrates of lipoxygenases, in water floated or jasmonatetreated leaves revealed preferential accumulation of linolenic acid. Remarkable amounts of free 9- as well as 13-hydroperoxy linolenic acid were found. In addition, metabolites of these hydroperoxides, such as the hydroxy derivatives and the respective aldehydes, appeared following methyl jasmonate treatment. These findings were substantiated by metabolite profiling of isolated chloroplasts, and subfractions including the envelope, the stroma and the thylakoids, indicating a preferential occurrence of lipoxygenasederived products in the stroma and in the envelope. These data revealed jasmonateinduced activation of the hydroperoxide lyase and reductase branch within the lipoxygenase pathway and suggest differential activity of the three 13-lipoxygenases under different stress conditions.