Dem IPB wird erneut ein beispielhaftes Handeln im Sinne einer chancengleichheitsorientierten Personal- und Organisationspolitik bescheinigt. Das Institut erhält zum 6. Mal in Folge das TOTAL E-QUALITY…
Die Plant Science Student Conference (PSSC) wird seit 20 Jahren im jährlichen Wechsel von Studierenden der beiden Leibniz-Institute IPK und IPB organisiert. Im Interview erläutern Christina Wäsch…
Sultani, H. N.; Morgan, I. M.; Hussain, H.; Haeri, H. H.; Hinderberger, D.; Kaluđerović, G. N.; Westermann, B.;Synthesis of rhodamine TEMPO conjugates via isonitrile‐based multicomponent‐reactions for mitochondria‐targeted ROS‐detection in cancer cellsAdvanced Sensor Research42400180(2025)DOI: 10.1002/adsr.202400180
A novel series of profluorescent rhodamine nitroxide conjugates are synthesized utilizing well‐known isonitrile‐based multicomponent reactions (IMCRs). The synthesized conjugates are rationally designed as mitochondria‐targeting probes for the detection of reactive oxygen species in living cells. Herein, the synthesized probes demonstrate high selectivity to target the mitochondria of both of PC3‐ and NIH3T3‐cells which represent cancer and normal cell lines. Attaching TEMPO nitroxide to rhodamine leads to fluorescence quenching, allowing for ROS detection and quantification. The prepared sensors provide a reliable method for distinguishing between different oxidative environments in living organisms through different levels of fluorescence to be measured. The use of the Ugi multicomponent reaction enables an efficient and versatile synthetic approach, offering significant advantages over previously reported methods for constructing ROS‐detecting probes. The simplicity of the reaction setup and the ability to generate a diverse library of products by varying Ugi components make this protocol highly adaptable for further chemical modification and potential applications in biological systems.
Publikation
Palermo, J. S.; Palermo, T. B.; Cappellari, L. d. R.; Balcke, G. U.; Tissier, A.; Giordano, W.; Banchio, E.;Influence of plant growth-promoting rhizobacteria (PGPR) inoculation on phenolic content and key biosynthesis-related processes in Ocimum basilicum under Spodoptera frugiperda herbivoryPlants14857(2025)DOI: 10.3390/plants14060857
Plants are naturally subjected to various types of biotic stresses, including pathogenic microorganisms and herbivory by insects, which trigger different signaling pathways and related defense mechanisms. Inoculation with microorganisms, such as plant growth-promoting rhizobacteria (PGPR), can be seen as a form of stress because it triggers a systemic resistance response in plants similar to that caused by insect herbivory. However, these interactions have typically been studied independently, which has limited the understanding of their combined effects. This study examines the effects of Bacillus amyloliquefaciens GB03 inoculation and Spodoptera frugiperda herbivory on the total phenolic contents of Ocimum basilicum. We also analyze the levels of endogenous phytohormones and the activity of phenylalanine ammonia-lyase (PAL), a crucial enzyme involved in the biosynthesis of phenolic defense-related metabolites. The results indicate that the total phenolic content significantly increased only in plants that were both inoculated by GB03 and damaged by larvae. Additionally, PAL activity showed an increase in plants that were damaged by larvae and in those subjected to the combined treatment of larval damage and inoculation with GB03. Regarding phytohormones, in plants damaged by insects, the levels of salicylic acid (SA) increased, regardless of whether they were inoculated or not, while the levels of jasmonic acid–isoleucine (JA-ile) rose in all treatments compared to the control. This study highlights the intricate relationships among beneficial microbes, herbivores, and plant defense mechanisms, emphasizing their potential impact on improving plant resilience and the production of secondary metabolites. Furthermore, understanding the independent effects of PGPR inoculation, beyond its interaction with herbivory, could provide valuable insights into its role as a sustainable alternative for enhancing plant defense responses and promoting crop productivity.