Die Plant Science Student Conference (PSSC) wird seit 20 Jahren im jährlichen Wechsel von Studierenden der beiden Leibniz-Institute IPK und IPB organisiert. Im Interview erläutern Christina Wäsch (IPK) und Carolin Apel (IPB),…
Über 600 Gäste kamen am 4. Juli ans IPB zur Langen Nacht, die Wissen schafft, um bei unserem Wissenschafts-Quiz-Parcours viel Neues zu erfahren und ihre Kenntnisse unter Beweis zu stellen. Unser Programm in diesem Jahr…
Doll, J.; Hause, B.; Demchenko, K.; Pawlowski, K.; Krajinski, F.;A Member of the Germin-Like Protein Family is a Highly Conserved Mycorrhiza-Specific Induced GenePlant Cell Physiol.441208-1214(2003)DOI: 10.1093/pcp/pcg153
A Medicago truncatula cDNA encoding a germin-like protein (GLP) was isolated from a suppression subtractive hybridization cDNA library enriched for arbuscular mycorrhiza (AM)-induced genes. The MtGLP1 amino acid sequence shows some striking differences to previously described plant GLP sequences and might therefore represent a new subgroup of this multigene family. The MtGlp1 mRNA was strongly induced in roots and root cultures colonized by the AM fungus Glomus intraradices. Whereas MtGlp1 is strongly induced in AM, no transcripts of the gene were detected in non-infected roots or in roots after infection with the oomycete root pathogen Aphanomyces euteiches or with Rhizobia. Increased phosphate levels during fertilization also could not stimulate MtGlp1 transcription. Hence, MtGlp1 induction seems to be an AM-specific phenomenon. In situ hybridization showed that MtGlp1 is localized in arbuscule containing cells. A putative orthologue of this AM-specific GLP gene could be localized in a second legume Lotus japonicus, indicating that the regulation of a member of the GLP family belongs to a conserved mechanism in AM regulation in different plant species.
Publikation
Krajinski, F.; Hause, B.; Gianinazzi-Pearson, V.; Franken, P.;Mtha1, a Plasma Membrane H+-ATPase Gene from Medicago truncatula, Shows Arbuscule-Specific Induced Expression in Mycorrhizal TissuePlant Biol.4754-761(2003)DOI: 10.1055/s-2002-37407
Transport processes between plant and fungal cells are key elements in arbuscular mycorrhiza (AM), where H+‐ATPases are considered to be involved in active uptake of nutrients from the symbiotic interface. Genes encoding H+‐ATPases were identified in the genome of Medicago truncatula and three cDNA fragments of the H+‐ATPase gene family (Mtha 1 ‐ 3) were obtained by RT‐PCR using RNA from M. truncatula mycorrhizal roots as template. While Mtha 2 and Mtha 3 appeared to be constitutively expressed in roots and unaffected by AM development, transcripts of Mtha 1 could only be detected in AM tissues and not in controls. Further analyses by RT‐PCR revealed that Mtha 1 transcripts are not detectable in shoots and phosphate availability did not affect RNA accumulation of the gene. Localization of transcripts by in situ hybridization on AM tissues showed that Mtha 1 RNA accumulates only in cells containing fungal arbuscules. This is the first report of arbuscule‐specific induced expression of a plant H+‐ATPase gene in mycorrhizal tissues.