Dem IPB wird erneut ein beispielhaftes Handeln im Sinne einer chancengleichheitsorientierten Personal- und Organisationspolitik bescheinigt. Das Institut erhält zum 6. Mal in Folge das TOTAL E-QUALITY…
Die Plant Science Student Conference (PSSC) wird seit 20 Jahren im jährlichen Wechsel von Studierenden der beiden Leibniz-Institute IPK und IPB organisiert. Im Interview erläutern Christina Wäsch…
Fruiting bodies of the Chilean mushroom Dermocybe nahuelbutenis Garrido & E. Horak (syn.: Cortinariusnahuelbutensis (Garrido & E. Horak) E. Valenz. & G. Moreno) were chemically investigated for the first time andafforded the new dimeric anthraqinone 7,7'-emodinphyscion (1) beside the know anthraquinones dermolutein (2),endocrocin (3), skyrin (4) and the dimeric pre-anthraquinone derivative flavomannin C (5). The chemotaxonomicsignificance of the pigments is discussed.
Publikation
Alresly, Z.; Lindequist, U.; Lalk, M.; Porzel, A.; Arnold, N.; Wessjohann, L. A.;Bioactive Triterpenes from the Fungus Piptoporus betulinusRec. Nat. Prod.10103-108(2016)
Phytochemical investigation of the ethyl acetate extract of the fruiting bodies from the basidiomycete Piptoporus betulinus led to the isolation of a new bioactive lanostane triterpene identified as 3 b -acetoxy-16-hydroxy-24-oxo-5α-lanosta-8- ene-21-oic acid (1). In addition, ten known triterpenes, polyporenic acid A (5), polyporenic acid C (4), three derivatives of polyporenic acid A (8, 10, 11), betulinic acid (3), betulin (2), ergosterol peroxide (6), 9,11-dehydroergosterol peroxide (7), and fomefficinic acid (9), were also isolated from the fungus. All isolated compounds were tested for antimicrobial activity against some Gram-positive and Gram-negative bacteria as well as against a fungal strain. The new triterpene and some of the other compounds showed antimicrobial activity against Gram-positive bacteria.
Publikation
Guseman, J. M.; Hellmuth, A.; Lanctot, A.; Feldman, T. P.; Moss, B. L.; Klavins, E.; Calderón Villalobos, L. I. A.; Nemhauser, J. L.;Auxin-induced degradation dynamics set the pace for lateral root developmentDevelopment142905-909(2015)DOI: 10.1242/dev.117234
Auxin elicits diverse cell behaviors through a simple nuclear signaling pathway initiated by degradation of Aux/IAA co-repressors. Our previous work revealed that members of the large Arabidopsis Aux/IAA family exhibit a range of degradation rates in synthetic contexts. However, it remained an unresolved issue whether differences in Aux/IAA turnover rates played a significant role in plant responses to auxin. Here, we use the well-established model of lateral root development to directly test the hypothesis that the rate of auxin-induced Aux/IAA turnover sets the pace for auxin-regulated developmental events. We did this by generating transgenic plants expressing degradation rate variants of IAA14, a crucial determinant of lateral root initiation. Progression through the well-established stages of lateral root development was strongly correlated with the engineered rates of IAA14 turnover, leading to the conclusion that Aux/IAAs are auxin-initiated timers that synchronize developmental transitions.
Publikation
Ali, N. A. A.; Wurster, M.; Arnold, N.; Lindequist, U.; Wessjohann, L.;Essential Oil Composition from Oleogum Resin of Soqotraen Commiphora kuaRec. Nat. Prod.270-75(2008)
The major constituents of the essential oil obtained by hydrodistillation from the oleogum resin of Commiphora kua Vollesen were identified by GC-MS. Sixteen constituents were detected from the essential oil, which constituted about (90.5%) of the total amount. Major constituents of the oil were α- cadinol (33.0%), g -cadinene (22.5%), d -cadinene (17.0%), isocaryophyllene (3.7%), allo-aromadendrene (2.8%), α-muurolene (2.7%), and α-humulene (2.4%). The Oil of Commiphora kua showed moderate antifungal activity against Cladosporium cucumerinum.