Dem IPB wird erneut ein beispielhaftes Handeln im Sinne einer chancengleichheitsorientierten Personal- und Organisationspolitik bescheinigt. Das Institut erhält zum 6. Mal in Folge das TOTAL E-QUALITY…
Die Plant Science Student Conference (PSSC) wird seit 20 Jahren im jährlichen Wechsel von Studierenden der beiden Leibniz-Institute IPK und IPB organisiert. Im Interview erläutern Christina Wäsch…
Weinhold, A.; Döll, S.; Liu, M.; Schedl, A.; Pöschl, Y.; Xu, X.; Neumann, S.; Dam, N. M.;Tree species richness differentially affects the chemical composition of leaves, roots and root exudates in four subtropical tree speciesJ. Ecol.11097-116(2022)DOI: 10.1111/1365-2745.13777
1. Plants produce thousands of compounds, collectively called the metabolome, which mediate interactions with other organisms. The metabolome of an individual plant may change according to the number and nature of these interactions. We tested the hypothesis that tree diversity level affects the metabolome of four subtropical tree species in a biodiversity–ecosystem functioning experiment, BEF-China. We postulated that the chemical diversity of leaves, roots and root exudates increases with tree diversity. We expected that the strength of this diversity effect differs among leaf, root and root exudates samples. Considering their role in plant competition, we expected to find the strongest effects in root exudates. 2. Roots, root exudates and leaves of four tree species (Cinnamomum camphora, Cyclobalanopsis glauca, Daphniphyllum oldhamii and Schima superba) were sampled from selected plots in BEF-China. The exudate metabolomes were normalized over their non-purgeable organic carbon level. Multivariate analyses were applied to identify the effect of both neighbouring (local) trees and plot diversity on tree metabolomes. The species- and sample-specific metabolites were assigned to major compound classes using the ClassyFire tool, whereas potential metabolites related to diversity effects were annotated manually. 3. Individual tree species showed distinct leaf, root and root exudate metabolomes. The main compound class in leaves was the flavonoids, whereas carboxylic acids, prenol lipids and specific alkaloids were most prominent in root exudates and roots. Overall, plot diversity had a stronger effect on metabolome profiles than the local diversity. Leaf metabolomes responded more often to tree diversity level than exudates, whereas root metabolomes varied the least. We found no uniform or general pattern of alterations in metabolite richness or diversity in response to variation in tree diversity. The response differed among species and tissues. 4. Synthesis. Classification of metabolites supported initial ecological interpretation of differences among species and organs. Particularly, the metabolomes of leaves and root exudates respond to differences in tree diversity. These responses were neither linear nor uniform and individual metabolites showed different dynamics. More controlled interaction experiments are needed to dissect the causes and consequences of the observed shifts in plant metabolomes.
Publikation
Walker, T. W. N.; Alexander, J. M.; Allard, P.-M.; Baines, O.; Baldy, V.; Bardgett, R. D.; Capdevila, P.; Coley, P. D.; David, B.; Defossez, E.; Endara, M.; Ernst, M.; Fernandez, C.; Forrister, D.; Gargallo‐Garriga, A.; Jassey, V. E. J.; Marr, S.; Neumann, S.; Pellissier, L.; Peñuelas, J.; Peters, K.; Rasmann, S.; Roessner, U.; Sardans, J.; Schrodt, F.; Schuman, M. C.; Soule, A.; Uthe, H.; Weckwerth, W.; Wolfender, J.; Dam, N. M.; Salguero‐Gómez, R.;Functional Traits 2.0: The power of the metabolome for ecologyJ. Ecol.1104-20(2022)DOI: 10.1111/1365-2745.13826
1. A major aim of ecology is to upscale attributes of individuals to understand processes at population, community and ecosystem scales. Such attributes are typically described using functional traits, that is, standardised characteristics that impact fitness via effects on survival, growth and/or reproduction. However, commonly used functional traits (e.g. wood density, SLA) are becoming increas-ingly criticised for not being truly mechanistic and for being questionable pre-dictors of ecological processes.2. This Special Feature reviews and studies how the metabolome (i.e. the thousands of unique metabolites that underpin physiology) can enhance trait-based ecology and our understanding of plant and ecosystem functioning.3. In this Editorial, we explore how the metabolome relates to plant functional traits, with reference to life-history trade-offs governing fitness between generations and plasticity shaping fitness within generations. We also identify solutions to challenges of acquiring, interpreting and contextualising metabolome data, and propose a roadmap for integrating the metabolome into ecology. 4. We next summarise the seven studies composing the Special Feature, which use the metabolome to examine mechanisms behind plant community assembly, plant-organismal interactions and effects of plants and soil micro-organisms on ecosystem processes. 5. Synthesis. We demonstrate the potential of the metabolome to improve mechanistic and predictive power in ecology by providing a high-resolution coupling between physiology and fitness. However, applying metabolomics to ecological questions is currently limited by a lack of conceptual, technical and data frameworks, which needs to be overcome to realise the full potential of the metabolome for ecology.