Die Plant Science Student Conference (PSSC) wird seit 20 Jahren im jährlichen Wechsel von Studierenden der beiden Leibniz-Institute IPK und IPB organisiert. Im Interview erläutern Christina Wäsch (IPK) und Carolin Apel (IPB),…
Über 600 Gäste kamen am 4. Juli ans IPB zur Langen Nacht, die Wissen schafft, um bei unserem Wissenschafts-Quiz-Parcours viel Neues zu erfahren und ihre Kenntnisse unter Beweis zu stellen. Unser Programm in diesem Jahr…
Bittner, A.; Hause, B.; Baier, M.;Cold-priming causes oxylipin dampening during the early cold and light response of Arabidopsis thalianaJ. Exp. Bot.727163-7179(2021)DOI: 10.1093/jxb/erab314
Abstract
The comparison of transcriptome time-courses of the first 2 h of the cold or highlight response of 24 h cold primed and naive Arabidopsis thaliana showed that priming quickly modifies gene expression in a trigger-specific manner. It dampened up- as well as down-regulation of genes in the cold and in the light. 1/3 of the priming-regulated genes were jasmonate sensitive, including the full set of genes required for oxylipin biosynthesis. qPCR-based analysis in wildtype plants and mutants demonstrated that OPDA (12-oxo phytenoic acid) biosynthesis relative to the jasmonic acid (JA) availability controls dampening of the genes for oxylipin biosynthetic enzymes: Gene regulation in oxylipin biosynthesis mutants more strongly depended on the biosynthesis of the JA precursor OPDA than on its conversion to JA. Additionally, priming-dependent dampening during triggering was more linked to OPDA than to JA level regulation and spray application of OPDA prior to triggering counteracted gene dampening. In contrast to cold-priming induced dampening of ZAT10, priming regulation of the oxylipin hub was insensitive to priming-induced accumulation of thylakoid ascorbate peroxidase and mediated by modulation of the oxylipin sensitivity of genes for OPDA biosynthesis.
Publikation
Weier, D.; Thiel, J.; Kohl, S.; Tarkowská, D.; Strnad, M.; Schaarschmidt, S.; Weschke, W.; Weber, H.; Hause, B.;Gibberellin-to-abscisic acid balances govern development and differentiation of the nucellar projection of barley grainsJ. Exp. Bot.655291-5304(2014)DOI: 10.1093/jxb/eru289
In cereal grains, the maternal nucellar projection (NP) constitutes the link to the filial organs, forming a transfer path for assimilates and signals towards the endosperm. At transition to the storage phase, the NP of barley (Hordeum vulgare) undergoes dynamic and regulated differentiation forming a characteristic pattern of proliferating, elongating, and disintegrating cells. Immunolocalization revealed that abscisic acid (ABA) is abundant in early non-elongated but not in differentiated NP cells. In the maternally affected shrunken-endosperm mutant seg8, NP cells did not elongate and ABA remained abundant. The amounts of the bioactive forms of gibberellins (GAs) as well as their biosynthetic precursors were strongly and transiently increased in wild-type caryopses during the transition and early storage phases. In seg8, this increase was delayed and less pronounced together with deregulated gene expression of specific ABA and GA biosynthetic genes. We concluded that differentiation of the barley NP is driven by a distinct and specific shift from lower to higher GA:ABA ratios and that the spatial–temporal change of GA:ABA balances is required to form the differentiation gradient, which is a prerequisite for ordered transfer processes through the NP. Deregulated ABA:GA balances in seg8 impair the differentiation of the NP and potentially compromise transfer of signals and assimilates, resulting in aberrant endosperm growth. These results highlight the impact of hormonal balances on the proper release of assimilates from maternal to filial organs and provide new insights into maternal effects on endosperm differentiation and growth of barley grains.