- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
2,4-Diaryl substituted 3,7-diazabicyclo[3.3.1]nonan-9-one 1,5-diesters were found to have a high affinity for κ-opioid receptors. To develop highly potent analgesics, the purpose of this study was the synthesis and the structural characterisation of the novel 2,4-bis(4-nitrophenyl), 2,4-bis(3-nitrophenyl), 2,4-bis(4-quinolyl), 2,4-bis(2-quinolyl), 2,4-bis(1-naphthyl) and 2,4-bis(2-naphthyl) substituted 3,7-diazabicyclo[3.3.1]nonan-9-one 1,5-diesters by means of NMR spectroscopy and molecular modelling. It could be proved that several derivatives undergo trans–cis-isomerisation of the aromatic rings linked to the rigid skeleton whereas others show rotational isomerisation. Semiempirical quantum-chemical PM3 calculations were performed to analyse the thermodynamic stability of the isomers as well as the mechanism of the trans–cis- or cis–trans-conversion.
Publikation
Since secondary metabolites are involved in fungal-host interactions, those of endophytes and their hosts were studied to try to understand why endophytic infections remain symptomless. A screening of fungal isolates for biologically active secondary metabolites (antibacterial, antifungal, herbicidal) showed that the proportion of endophytic isolates that produced herbicidally active substances was three times that of the soil isolates and twice that of the phytopathogenic fungi. As markers for the plant defence reaction, the concentrations of certain phenolic metabolites were chosen. Those that differed in concentration were higher in the roots of plants infected with an endophyte than in those infected with a pathogen. The results presented here were regarded together with previous studies on other aspects of the plant defence response using dual cultures of plant host calli and endophytes, and of cell suspension cultures following endophytic as compared to pathogenic elicitation. The following hypothesis was developed: both the pathogen-host and the endophyte-host interactions involve constant mutual antagonisms at least in part based on the secondary metabolites the partners produce. Whereas the pathogen-host interaction is imbalanced and results in disease, that of the endophyte and its host is a balanced antagonism.
Publikation
Vinblastine and vincristine are two medically important bisindole alkaloids from Catharanthus roseus (Madagascar periwinkle). Attempts at production in cell cultures failed because a part of the complex pathway was not active, i.e. from tabersonine to vindoline. It starts with tabersonine 16-hydroxylase (T16H), a cytochrome P450-dependent enzyme. We now show that T16H is induced in the suspension culture by light and we report the cloning of the cDNA. The enzyme was expressed in Escherichia coli as translational fusion with the P450 reductase from C. roseus, and the reaction product was identified by mass spectrometry. The protein (CYP71D12) shares 47–52% identity with other members of the CYP71D subfamily with unknown function. The induction by light was strongly enhanced by a nutritional downshift (transfer into 8% aqueous sucrose). We discuss the possibility that the entire pathway to bisindoles can be expressed in suspension cultures.
Publikation
Hydroxycinnamoyl-CoA:tyramineN-(hydroxycinnamoyl)transferase (THT; EC 2.3.1.110) catalyzes the transfer of hydroxycinnamic acids from the respective CoA esters to tyramine and other amines in the formation ofN-(hydroxycinnamoyl)amines. Expression of THT is induced byPhytophthora infestans, the causative agent of late blight disease in potato. The amino acid sequences of nine endopeptidase LysC-liberated peptides from purified potato THT were determined. Using degenerate primers, a THT-specific fragment was obtained by reverse transcription-polymerase chain reaction, and THT cDNA clones were isolated from a library constructed from RNA of elicitor-treated potato cells. The open reading frame encoding a protein of 248 amino acids was expressed in Escherichia coli. Recombinant THT exhibited a broad substrate specificity, similar to that of native potato THT, accepting cinnamoyl-, 4-coumaroyl-, caffeoyl-, feruloyl- and sinapoyl-CoA as acyl donors and tyramine, octopamine, and noradrenalin as acceptors tested. Elicitor-induced THT transcript accumulation in cultured potato cells peaked 5 h after initiation of treatment, whereas enzyme activity was highest from 5 to 30 h after elicitation. In soil-grown potato plants, THT mRNA was most abundant in roots. Genomic Southern analyses indicate that, in potato, THT is encoded by a multigene family.
Publikation
Experiments were performed to confirm that the aldimine bond formation is a spontaneous reaction, because attempts to find an enzyme catalyzing the last decisive step in betaxanthin biosynthesis, the aldimine formation, failed. Feeding different amino acids to betalain-forming hairy root cultures of yellow beet (Beta vulgaris L. subsp. vulgaris“Golden Beet”) showed that all amino acids (S- andR-forms) led to the corresponding betaxanthins. We observed neither an amino acid specificity nor a stereoselectivity in this process. In addition, increasing the endogenous phenylalanine (Phe) level by feeding the Phe ammonia-lyase inhibitor 2-aminoindan 2-phosphonic acid yielded the Phe-derived betaxanthin. Feeding amino acids or 2-aminoindan 2-phosphonic acid to hypocotyls of fodder beet (B. vulgaris L. subsp. vulgaris“Altamo”) plants led to the same results. Furthermore, feeding cyclo-3-(3,4-dihydroxyphenyl)-alanine (cyclo-Dopa) to these hypocotyls resulted in betanidin formation, indicating that the decisive step in betacyanin formation proceeds spontaneously. Finally, feeding betalamic acid to broad bean (Vicia faba L.) seedlings, which are known to accumulate high levels of Dopa but do not synthesize betaxanthins, resulted in the formation of dopaxanthin. These results indicate that the condensation of betalamic acid with amino acids (possibly includingcyclo-Dopa or amines) in planta is a spontaneous, not an enzyme-catalyzed reaction.
Publikation
De novo jasmonic acid (JA) synthesis is required for wound-induced expression of proteinase inhibitors and other defense genes in potato and tomato. The first step in JA biosynthesis involves lipoxygenase (LOX) introducing molecular oxygen at the C-13 position of linolenic acid. We previously have shown that, in potato, at least two gene families code for 13-LOX proteins. We have now produced transgenic potato plants devoid of one specific 13-LOX isoform (LOX-H3) through antisense-mediated depletion of its mRNA. LOX-H3 depletion largely abolishes accumulation of proteinase inhibitors on wounding, indicating that this specific LOX plays an instrumental role in the regulation of wound-induced gene expression. As a consequence, weight gain of Colorado potato beetles fed on antisense plants is significantly larger than those fed on wild-type plants. The poorer performance of LOX-H3-deficient plants toward herbivory is more evident with a polyphagous insect; larvae of beet armyworm reared on the antisense lines have up to 57% higher weight than those fed on nontransformed plants. LOX-H3 thus appears to regulate gene activation in response to pest attack, and this inducible response is likely to be a major determinant for reducing performance of nonspecialized herbivores. However, the regulatory role of LOX-H3 is not caused by its involvement in the wound-induced increase of JA, as wild-type and LOX-H3 deficient plants have similar jasmonate levels after wounding. LOX-H3-deficient plants have higher tuber yields. The apparent effect of suppressing the inducible defensive response on plant vigor suggests that it may pose a penalty in plant fitness under nonstress situations.
Publikation
Compartmentation fluxes of carbohydrates along the phloem path were analysed in the petiole of Cyclamen persicum (L.) Mill. Sucrose represented the dominant fraction (58–75% of soluble carbohydrates in the vascular symplast). Planteose (12–22%), glucose (3–8%) and fructose (3–13%) occurred in lower amounts (data from liquid chromatography, percentages of the total peak area). Starch was not detectable. Upon feeding leaves with 14CO2, 98% and 90% of radiolabel was recovered as sucrose in the vascular symplast after 3 h and 24 h, respectively. Thus, sucrose appeared to be the exclusive transport sugar in Cyclamen. Experiments with asymmetrically labelled sucrose revealed that there was no metabolism of translocated sucrose. Analysis of six consecutive petiole segments (each 2 cm in length) showed a homogeneous longitudinal distribution of sucrose and planteose. The lateral distribution of these sugars differed markedly. On average, the sucrose concentration amounted to 4.7 and 0.4 mg g−1 FM in the vascular apoplast and petiole parenchyma, respectively. Sucrose was unloaded without hydrolysis and stored in the periphery of the phloem path. Planteose was identified as another storage saccharide. Sucrose synthesis by sucrose phosphate synthase occurred when isolated vascular bundles were incubated with [14C]glucose or [14C]fructose. These data suggest that the phloem path is characterized by both source and sink like activity.
Publikation
Three new β-carboline alkaloids were isolated from Hedyotis capitellata (Rubiaceae). Their structures were elucidated by spectroscopic data and X-ray analysis.
Publikation
Two new β-carboline alkaloids, hedyocapitelline and hedyocapitine, were isolated from Hedyotis capitellata var. mollis (Rubiaceae). Their structures were elucidated by spectroscopic data 1H- and 13C-NMR, MS, IR, UV).
Publikation
The plant hormone indoleacetic acid (IAA or auxin) transcriptionally activates a select set of early genes. The Auxl IAA class of early auxin-responsive genes encodes a large family of short-lived, nuclear proteins. Aux/IAA polypeptides homo-and heterodimerize, and interact with auxin-response transcription factors (ARFs) via C-terminal regions conserved in both protein families. This shared region contains a predicted βαα motif similar to the prokaryotic β-Ribbon DNA binding domain, which mediates both protein dimerization and DNA recognition. Here, we show by circular dichroism spectroscopy and by chemical cross-linking experiments that recombinant peptides corresponding to the predicted βαα region of three Aux/IAA proteins from Arabidopsis thaliana contain substantial α-helical secondary structure and undergo homo- and heterotypic interactions in vitro. Our results indicate a similar biochemical function of the plant βαα domain and suggest that the βαα fold plays an important role in mediating combinatorial interactions of Aux/IAA and ARF proteins to specifically regulate secondary gene expression in response to auxin.