- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
An account of the most commonly used reagents for the introduction of the benzeneselenyl (phenyl seleno) group is given. The review focuses on the various methods of its introduction as auxiliary, modifying or protective entity, and its subsequent removal, thereby often promoting other reactions as cyclizations or double bond formation. Less emphasis is laid on reactions of the phenylselenenylated intermediates with the PhSe‐group left intact utilizing its stabilizing properties on charged intermediates, on reagents with a modified phenyl group, e.g. chiral derivatives, or on reactions not involving intermediate CSe‐bond formation.
Publikation
Jasmonic acid (JA) is an ubiquitously occurring plant growth regulator which functions as a signal of developmentally or environmentally regulated expression of various genes thereby contributing to the defense status of plants [1–5]. The formation of jasmonates in a lipid‐based signalling pathway via octadecanoids seems to be a common principle for many plant species to express wound‐ and stressinduced genes [4, 5].There are various octadecanoid‐derived signals [3]. Among them, jasmonic acid and its amino acid conjugates are most active in barley, supporting arguments that β‐oxidation is an essential step in lipid‐based JA mediated responses. Furthermore, among derivatives of 12‐oxophytodienoic acid (PDA) carrying varying length of the carboxylic acid side‐chain, only those with a straight number of carbon atoms are able to induce JA responsive genes in barley leaves after treatment with these compounds. Barley leaves stressed by treatment with sorbitol solutions exhibit mainly an endogenous rise of JA and JA amino acid conjugates suggesting that both of them are stress signals. Data on organ‐ and tissue‐specific JA‐responsive gene expression will be presented and discussed in terms of “JA as a master switch” among various lipid‐derived signals.
Publikation
In tomato plants wounding leads to up-regulation of various plant defense genes via jasmonates (Ryan, 1992; Bergey et al., 1996). Using this model system of jasmonic acid (JA) signalling, we analyzed activity of octadecanoids to express JA-responsive genes. Leaf treatments were performed with naturally occurring octadecanoids and their molecular mimics such as coronatine or indanone conjugates. JA responses were recorded in terms of up- or down-regulation of various genes by analyzing transcript accumulation, and at least partially in vitro translation products and polypeptide pattern of leaf extracts. The data suggest: (i) 12-Oxo-phytodienoic acid and other intermediates of the octadecanoid pathway has to be ß-oxidized to give a JA response, (ii) Octadecanoids which can not be ß-oxidized are inactive, (iii) JA, its methyl ester (JM), and its amino acid conjugates are most active signals in tomato leaves leading to up regulation of mainly wound-inducible genes and down-regulation of mainly <house-keeping> genes, (iv) Some compounds carrying a JA/JM- or JA amino acid conjugate-like structure induce/repress only a subset of genes suggesting diversity of JA signalling.
Publikation
We found three methyl jasmonate−induced lipoxygenases with molecular masses of 92 kDa, 98 kDa, and 100 kDa (LOX‐92, ‐98 and ‐100) [Feussner, I., Hause, B., Vörös, K., Parthier, B. & Wasternack, C. (1995) Plant J. 7 , 949−957]. At least two of them (LOX‐92 and LOX‐100), were shown to be localized within chloroplasts of barley leaves. Here, we describe the isolation of a cDNA (3073 bp) coding for LOX‐100, a protein of 936 amino acid residues and a molecular mass of 106 kDa. By sequence comparison this lipoxygenase could be identified as LOX2‐type lipoxygenase and was therefore designated LOX2 : Hv : 1 . The recombinant lipoxygenase was expressed in Escherichia coli and characterized as linoleate 13‐LOX and arachidonate 15‐LOX, respectively. The enzyme exhibited a pH optimum around pH 7.0 and a moderate substrate preference for linoleic acid. The gene was transiently expressed after exogenous application of jasmonic acid methyl ester with a maximum between 12 h and 18 h. Its expression was not affected by exogenous application of abscisic acid. Also a rise of endogenous jasmonic acid resulting from sorbitol stress did not induce LOX2 : Hv : 1 , suggesting a separate signalling pathway compared with other jasmonate‐induced proteins of barley. The properties of LOX2 : Hv : 1 are discussed in relation to its possible involvement in jasmonic acid biosynthesis and other LOX forms of barley identified so far.
Publikation
The Arabidopsis Thi2.1 thionin gene was cloned and sequenced. The promoter was fused to the uidA gene and stably transformed into Arabidopsis to study its regulation. GUS expression levels correlated with the steady‐state levels of Thi2.1 mRNA, thus demonstrating that the promoter is sufficient for the regulation of the Thi2.1 gene. The sensitivity of the Thi2.1 gene to methyl jasmonate was found to be developmentally determined. Systemic and local expression could be induced by wounding and inoculation with Fusarium oxysporum f sp. matthiolae . A deletion analysis of the promoter identified a fragment of 325 bp upstream of the start codon, which appears to contain all the elements necessary for the regulation of the Thi2.1 gene. These results support the view that thionins are defence proteins, and indicate the possibility that resistance of Arabidopsis plants to necrotrophic fungal pathogens is mediated through the octadecanoid pathway.
Publikation
In addition to some known chalcones and ecdysteroids three new chalcones have been isolated from aerial parts of Vitex leptobotrys, the structures of which have been identified as 2′,4′-dihydroxy-4,6′-dimethoxychalcone, 4′-hydroxy-4,2′,6′-trimethoxychalcone and 4,2′,4′,β-tetrahydroxy-6′-methoxy-α,β-dihydrochalcone, respectively.
Publikation
Heterologous screening of a cDNA library from Pinus strobus seedlings identified clones for two chalcone synthase (CHS) related proteins (PStrCHS1 and PStrCHS2, 87.6% identity). Heterologous expression in Escherichia coli showed that PStrCHS1 performed the typical CHS reaction, that it used starter CoA-esters from the phenylpropanoid pathway, and that it performed three condensation reactions with malonyl-CoA, followed by the ring closure to the chalcone. PstrCHS2 was completely inactive with these starters and also with linear CoA-esters. Activity was detected only with a diketide derivative (N-acetylcysteamine thioester of 3-oxo-5-phenylpent-4-enoic acid) that corresponded to the CHS reaction intermediate postulated after the first condensation reaction. PstrCHS2 performed only one condensation, with 6-styryl-4-hydroxy-2-pyrone derivatives as release products. The enzyme preferred methylmalonyl-CoA against malonyl-CoA, if only methylmalonyl-CoA was available. These properties and a comparison with the CHS from Pinussylvestris suggested for PstrCHS2 a special function in the biosynthesis of secondary products. In contrast to P. sylvestris, P. strobus contains C-methylated chalcone derivatives, and the methyl group is at the position predicted from a chain extension with methylmalonyl-CoA in the second condensation of the biosynthetic reaction sequence. We propose that PstrCHS2 specifically contributes the condensing reaction with methylmalonyl-CoA to yield a methylated triketide intermediate. We discuss a model that the biosynthesis of C-methylated chalcones represents the simplest example of a modular polyketide synthase.
Publikation
Treatment of suspension-cultured potato cells (Solanum tuberosum L. cv. Desirée) with an elicitor from Phytophthora infestans induced increased incorporation of 4-hydroxybenzaldehyde, 4-hydroxybenzoate, and N-4-coumaroyl- and N-feruloyltyramine into the cell␣wall and secretion of N-4-coumaroyl- and N-feruloyltyramine into the culture medium. Induced metabolite accumulation was preceded by rapid and transient increases in activities of phenylalanine ammonia-lyase (EC 4.3.1.5) and tyrosine decarboxylase (TyrDC; EC 4.1.1.25), exhibiting maximal activities 5–10 h after initiation of elicitor treatment. Activities of hydroxycinnamoyl-CoA:tyramine hydroxycinnamoyltransferase (EC 2.3.1.110), catalyzing the formation of N-4-coumaroyl- and N-feruloyltyramine, increased later and remained at high levels. The phenolic defense compounds appear to be involved in cell wall reinforcement and may further directly affect fungal growth in the apoplastic space.
Publikation
The brassinosteroids brassinolide, castasterone and 24‐epi‐castasterone could be isolated and identified from seeds of Daucus carota . Furthermore, a new pregnanolone glucoside was identified as β‐D ‐glucopyranosyl‐(1‐2)‐β‐D ‐glucopyranosyl‐3β‐hydroxy‐5α‐pregnane‐20‐one (sophorosylpregnanolone) by nuclear magnetic resonance spectroscopy, liquid chromatography‐mass spectrometry and gas chromatography‐mass spectrometry.