- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
P-glycoprotein (P-gp, ABCB1) is an efflux transporter at the blood–brain barrier (BBB), which mediates clearance of beta-amyloid (Aβ) from brain into blood. We used (R)-[11C]verapamil PET in combination with partial P-gp inhibition with tariquidar to measure cerebral P-gp function in a beta-amyloidosis mouse model (APPtg) and in control mice at three different ages (50, 200 and 380 days). Following tariquidar pre-treatment (4 mg/kg), whole brain-to-plasma radioactivity concentration ratios (Kp,brain) were significantly higher in APPtg than in wild-type mice aged 50 days, pointing to decreased cerebral P-gp function. Moreover, we found an age-dependent decrease in cerebral P-gp function in both wild-type and APPtg mice of up to −50%. Alterations in P-gp function were more pronounced in Aβ-rich brain regions (hippocampus, cortex) than in a control region with negligible Aβ load (cerebellum). PET results were confirmed by immunohistochemical staining of P-gp in brain microvessels. Our results confirm previous findings of reduced P-gp function in Alzheimer’s disease mouse models and show that our PET protocol possesses adequate sensitivity to measure these functional changes in vivo. Our PET protocol may find use in clinical studies to test the efficacy of drugs to induce P-gp function at the human BBB to enhance Aβ clearance.
Publikation
Previous data suggest a possible link between multidrug resistance-associated protein 1 (ABCC1) and brain clearance of beta-amyloid (Aβ). We used PET with 6-bromo-7-[11C]methylpurine ([11C]BMP) to measure cerebral ABCC1 transport activity in a beta-amyloidosis mouse model (APP/PS1-21) and in wild-type mice aged 50 and 170 days, without and with pretreatment with the ABCC1 inhibitor MK571. One hundred seventy days-old-animals additionally underwent [11C]PiB PET scans to measure Aβ load. While baseline [11C]BMP PET scans detected no differences in the elimination slope of radioactivity washout from the brain (kelim) between APP/PS1-21 and wild-type mice of both age groups, PET scans after MK571 pretreatment revealed significantly higher kelim values in APP/PS1-21 mice than in wild-type mice aged 170 days, suggesting increased ABCC1 activity. The observed increase in kelim occurred across all investigated brain regions and was independent of the presence of Aβ plaques measured with [11C]PiB. Western blot analysis revealed a trend towards increased whole brain ABCC1 levels in 170 days-old-APP/PS1-21 mice versus wild-type mice and a significant positive correlation between ABCC1 levels and kelim. Our data point to an upregulation of ABCC1 in APP/PS1-21 mice, which may be related to an induction of ABCC1 in astrocytes as a protective mechanism against oxidative stress.
Publikation
Neprilysin is also known as skin fibroblast-derived elastase, and its up-regulation during aging is associated with impairments of the elastic fiber network, loss of skin elasticity and wrinkle formation. However, information on its elastase activity is still limited. The aim of this study was to investigate the degradation of fibrillar skin elastin by neprilysin and the influence of the donor's age on the degradation process using mass spectrometry and bioinformatics approaches. The results showed that cleavage by neprilysin is dependent on previous damage of elastin. While neprilysin does not cleave young and intact skin elastin well, it degrades elastin fibers from older donors, which may further promote aging processes. With regards to the cleavage behavior of neprilysin, a strong preference for Gly at P1 was found, while Gly, Ala and Val were well accepted at P1′ upon cleavage of tropoelastin and skin elastin. The results of the study indicate that the progressive release of bioactive elastin peptides by neprilysin upon skin aging may enhance local tissue damage and accelerate extracellular matrix aging processes.
Publikation
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases worldwide. Formation of amyloid plaques consisting of amyloid-β peptides (Aβ) is one of the hallmarks of AD. Several lines of evidence have shown a correlation between the Aβ aggregation and the disease development. Extensive research has been conducted with the aim to reveal the structures of the neurotoxic Aβ aggregates. However, the exact structure of pathological aggregates and mechanism of the disease still remains elusive due to complexity of the occurring processes and instability of various disease-relevant Aβ species. In this article we review up-to-date structural knowledge about amyloid-β peptides, focusing on data acquired using solution and solid state NMR techniques. Furthermore, we discuss implications from these structural studies on the mechanisms of aggregation and neurotoxicity.
Publikation
Skin aging is characterized by different features including wrinkling, atrophy of the dermis and loss of elasticity associated with damage to the extracellular matrix protein elastin. The aim of this study was to investigate the aging process of skin elastin at the molecular level by evaluating the influence of intrinsic (chronological aging) and extrinsic factors (sun exposure) on the morphology and susceptibility of elastin towards enzymatic degradation. Elastin was isolated from biopsies derived from sun-protected or sun-exposed skin of differently aged individuals. The morphology of the elastin fibers was characterized by scanning electron microscopy. Mass spectrometric analysis and label-free quantification allowed identifying differences in the cleavage patterns of the elastin samples after enzymatic digestion. Principal component analysis and hierarchical cluster analysis were used to visualize differences between the samples and to determine the contribution of extrinsic and intrinsic aging to the proteolytic susceptibility of elastin. Moreover, the release of potentially bioactive peptides was studied. Skin aging is associated with the decomposition of elastin fibers, which is more pronounced in sun-exposed tissue. Marker peptides were identified, which showed an age-related increase or decrease in their abundances and provide insights into the progression of the aging process of elastin fibers. Strong age-related cleavage occurs in hydrophobic tropoelastin domains 18, 20, 24 and 26. Photoaging makes the N-terminal and central parts of the tropoelastin molecules more susceptible towards enzymatic cleavage and, hence, accelerates the age-related degradation of elastin.
Publikation
Skin aging is characterized by different features including wrinkling, atrophy of the dermis and loss of elasticity associated with damage to the extracellular matrix protein elastin. The aim of this study was to investigate the aging process of skin elastin at the molecular level by evaluating the influence of intrinsic (chronological aging) and extrinsic factors (sun exposure) on the morphology and susceptibility of elastin towards enzymatic degradation. Elastin was isolated from biopsies derived from sun-protected or sun-exposed skin of differently aged individuals. The morphology of the elastin fibers was characterized by scanning electron microscopy. Mass spectrometric analysis and label-free quantification allowed identifying differences in the cleavage patterns of the elastin samples after enzymatic digestion. Principal component analysis and hierarchical cluster analysis were used to visualize differences between the samples and to determine the contribution of extrinsic and intrinsic aging to the proteolytic susceptibility of elastin. Moreover, the release of potentially bioactive peptides was studied. Skin aging is associated with the decomposition of elastin fibers, which is more pronounced in sun-exposed tissue. Marker peptides were identified, which showed an age-related increase or decrease in their abundances and provide insights into the progression of the aging process of elastin fibers. Strong age-related cleavage occurs in hydrophobic tropoelastin domains 18, 20, 24 and 26. Photoaging makes the N-terminal and central parts of the tropoelastin molecules more susceptible towards enzymatic cleavage and, hence, accelerates the age-related degradation of elastin.
Publikation
Neurofibromatosis type 1 (NF1) is a single-gene disorder affecting neurologic function in humans. The NF1+/– mouse model with germline mutation of the NF1 gene presents with deficits in learning, attention, and motor coordination, very similar to NF1 patients. The present study performed brain perfusion single-photon emission computed tomography (SPECT) in NF1+/– mice to identify possible perfusion differences as surrogate marker for altered cerebral activity in NF1. Cerebral perfusion was measured with hexamethyl-propyleneamine oxime (HMPAO) SPECT in NF1+/– mice and their wild-type littermates longitudinally at juvenile age and at young adulthood. Histology and immunohistochemistry were performed to test for structural changes. There was increased HMPAO uptake in NF1 mice in the amygdala at juvenile age, which reduced to normal levels at young adulthood. There was no genotype effect on thalamic HMPAO uptake, which was confirmed by ex vivo measurements of F-18-fluorodeoxyglucose uptake in the thalamus. Morphologic analyses showed no major structural abnormalities. However, there was some evidence of increased density of microglial somata in the amygdala of NF1-deficient mice. In conclusion, there is evidence of increased perfusion and increased density of microglia in juvenile NF1 mice specifically in the amygdala, both of which might be associated with altered synaptic plasticity and, therefore, with cognitive deficits in NF1.
Publikation
Neurofibromatosis type 1 (NF1) is a single-gene disorder affecting neurologic function in humans. The NF1+/– mouse model with germline mutation of the NF1 gene presents with deficits in learning, attention, and motor coordination, very similar to NF1 patients. The present study performed brain perfusion single-photon emission computed tomography (SPECT) in NF1+/– mice to identify possible perfusion differences as surrogate marker for altered cerebral activity in NF1. Cerebral perfusion was measured with hexamethyl-propyleneamine oxime (HMPAO) SPECT in NF1+/– mice and their wild-type littermates longitudinally at juvenile age and at young adulthood. Histology and immunohistochemistry were performed to test for structural changes. There was increased HMPAO uptake in NF1 mice in the amygdala at juvenile age, which reduced to normal levels at young adulthood. There was no genotype effect on thalamic HMPAO uptake, which was confirmed by ex vivo measurements of F-18-fluorodeoxyglucose uptake in the thalamus. Morphologic analyses showed no major structural abnormalities. However, there was some evidence of increased density of microglial somata in the amygdala of NF1-deficient mice. In conclusion, there is evidence of increased perfusion and increased density of microglia in juvenile NF1 mice specifically in the amygdala, both of which might be associated with altered synaptic plasticity and, therefore, with cognitive deficits in NF1.
Publikation
In contrast to the well characterized secreted phospholipases A2 (sPLA2) from animals, their homologues from plants have been less explored. Their production in purified form is more difficult, and no data on their stability are known. In the present paper, different variants of the sPLA2 isoform α from Arabidopsis thaliana (AtPLA2α) were designed using a new homology model with the aim to probe the impact of regions that are assumed to be important for stability and catalysis. Moreover tryptophan residues were introduced in critical regions to enable stability studies by fluorescence spectroscopy. The variants were expressed in Escherichia coli and the purified enzymes were analyzed to get first insights into the peculiarities of structure stability and structure activity relationships in plant sPLA2s in comparison with the well-characterized homologous enzymes from bee venom and porcine pancreas. Stability data of the AtPLA2 variants obtained by fluorescence or CD measurements of the reversible unfolding by guanidine hydrochloride and urea showed that all enzyme variants are less stable than the enzymes from animal sources although a similar tertiary core structure can be assumed based on molecular modeling. More extended loop structures at the N-terminus in AtPLA2α are suggested to be the main reasons for the much lower thermodynamic stabilities and cooperativities of the transition curves. Modifications in the N-terminal region (insertion, deletion, substitution by a Trp residue) exhibited a strong positive effect on activity whereas amino acid exchanges in other regions of the protein such as the Ca2+-binding loop and the loop connecting the two central helices were deleterious with respect to activity.
Publikation
In contrast to the well characterized secreted phospholipases A2 (sPLA2) from animals, their homologues from plants have been less explored. Their production in purified form is more difficult, and no data on their stability are known. In the present paper, different variants of the sPLA2 isoform α from Arabidopsis thaliana (AtPLA2α) were designed using a new homology model with the aim to probe the impact of regions that are assumed to be important for stability and catalysis. Moreover tryptophan residues were introduced in critical regions to enable stability studies by fluorescence spectroscopy. The variants were expressed in Escherichia coli and the purified enzymes were analyzed to get first insights into the peculiarities of structure stability and structure activity relationships in plant sPLA2s in comparison with the well-characterized homologous enzymes from bee venom and porcine pancreas. Stability data of the AtPLA2 variants obtained by fluorescence or CD measurements of the reversible unfolding by guanidine hydrochloride and urea showed that all enzyme variants are less stable than the enzymes from animal sources although a similar tertiary core structure can be assumed based on molecular modeling. More extended loop structures at the N-terminus in AtPLA2α are suggested to be the main reasons for the much lower thermodynamic stabilities and cooperativities of the transition curves. Modifications in the N-terminal region (insertion, deletion, substitution by a Trp residue) exhibited a strong positive effect on activity whereas amino acid exchanges in other regions of the protein such as the Ca2+-binding loop and the loop connecting the two central helices were deleterious with respect to activity.