- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
Background: The plant phyllosphere is a well-studied habitat characterized by low nutrient availability and high community dynamics. In contrast, plant trichomes, known for their production of a large number of metabolites, are a yet unexplored habitat for microbes. We analyzed the phyllosphere as well as trichomes of two tomato genotypes (Solanum lycopersicum LA4024, S. habrochaites LA1777) by targeting bacterial 16S rRNA gene fragments. Results: Leaves, leaves without trichomes, and trichomes alone harbored similar abundances of bacteria (108–109 16S rRNA gene copy numbers per gram of sample). In contrast, bacterial diversity was found significantly increased in trichome samples (Shannon index: 4.4 vs. 2.5). Moreover, the community composition was significantly different when assessed with beta diversity analysis and corresponding statistical tests. At the bacterial class level, Alphaproteobacteria (23.6%) were significantly increased, whereas Bacilli (8.6%) were decreased in trichomes. The bacterial family Sphingomonadacea (8.4%) was identified as the most prominent, trichome-specific feature; Burkholderiaceae and Actinobacteriaceae showed similar patterns. Moreover, Sphingomonas was identified as a central element in the core microbiome of trichome samples, while distinct low-abundant bacterial families including Hymenobacteraceae and Alicyclobacillaceae were exclusively found in trichome samples. Niche preferences were statistically significant for both genotypes and genotype-specific enrichments were further observed. Conclusion: Our results provide first evidence of a highly specific trichome microbiome in tomato and show the importance of micro-niches for the structure of bacterial communities on leaves. These findings provide further clues for breeding, plant pathology and protection as well as so far unexplored natural pathogen defense strategies.
Publikation
The essential trace element selenium (Se) is controversially discussed concerning its role in health and disease. Its various physiological functions are largely mediated by Se incorporation in the catalytic center of selenoproteins. In order to gain insights into the impact of Se deficiency and of supplementation with different Se compounds (selenite, selenate, selenomethionine) at defined concentrations (recommended, 150 μg/kg diet; excessive, 750 μg/kg diet) in murine colon tissues, a 20‐week feeding experiment was performed followed by analysis of the protein expression pattern of colon tissue specimens by 2D‐DIGE and MALDI‐TOF MS. Using this approach, 24 protein spots were identified to be significantly regulated by the different Se compounds. These included the antioxidant enzyme peroxiredoxin‐5 (PRDX5), proteins with binding capabilities, such as cofilin‐1 (COF1), calmodulin, and annexin A2 (ANXA2), and proteins involved in catalytic processes, such as 6‐phosphogluconate dehydrogenase (6PGD). Furthermore, the Se compounds demonstrated a differential impact on the expression of the identified proteins. Selected target structures were validated by qPCR and Western blot which mainly confirmed the proteomic profiling data. Thus, novel Se‐regulated proteins in colon tissues have been identified, which expand our understanding of the physiologic role of Se in colon tissue.
Publikation
The essential trace element selenium (Se) is controversially discussed concerning its role in health and disease. Its various physiological functions are largely mediated by Se incorporation in the catalytic center of selenoproteins. In order to gain insights into the impact of Se deficiency and of supplementation with different Se compounds (selenite, selenate, selenomethionine) at defined concentrations (recommended, 150 μg/kg diet; excessive, 750 μg/kg diet) in murine colon tissues, a 20‐week feeding experiment was performed followed by analysis of the protein expression pattern of colon tissue specimens by 2D‐DIGE and MALDI‐TOF MS. Using this approach, 24 protein spots were identified to be significantly regulated by the different Se compounds. These included the antioxidant enzyme peroxiredoxin‐5 (PRDX5), proteins with binding capabilities, such as cofilin‐1 (COF1), calmodulin, and annexin A2 (ANXA2), and proteins involved in catalytic processes, such as 6‐phosphogluconate dehydrogenase (6PGD). Furthermore, the Se compounds demonstrated a differential impact on the expression of the identified proteins. Selected target structures were validated by qPCR and Western blot which mainly confirmed the proteomic profiling data. Thus, novel Se‐regulated proteins in colon tissues have been identified, which expand our understanding of the physiologic role of Se in colon tissue.
Publikation
PTMs are defined as covalent additions to functional groups of amino acid residues in proteins like phosphorylation, glycosylation, S‐nitrosylation, acetylation, methylation, lipidation, SUMOylation as well as oxidation. Oxidation of proteins has been characterized as a double‐edged sword. While oxidative modifications, in particular of cysteine residues, are widely involved in the regulation of cellular homeostasis, oxidative stress resulting in the oxidation of biomolecules along with the disruption of their biological functions can be associated with the development of diseases, such as cancer, diabetes, and neurodegenerative diseases, respectively. This is also the case for advanced glycation end products, which result from chemical reactions of keto compounds such as oxidized sugars with proteins. The role of oxidative modifications under physiological and pathophysiological conditions remains largely unknown. Recently, novel technologies have been established that allow the enrichment, identification, and characterization of specific oxidative PTMs (oxPTMs). This is essential to develop strategies to prevent and treat diseases that are associated with oxidative stress. Therefore this review will focus on (i) the methods and technologies, which are currently applied for the detection, identification, and quantification of oxPTMs including the design of high throughput approaches and (ii) the analyses of oxPTMs related to physiological and pathological conditions.
Publikation
PTMs are defined as covalent additions to functional groups of amino acid residues in proteins like phosphorylation, glycosylation, S‐nitrosylation, acetylation, methylation, lipidation, SUMOylation as well as oxidation. Oxidation of proteins has been characterized as a double‐edged sword. While oxidative modifications, in particular of cysteine residues, are widely involved in the regulation of cellular homeostasis, oxidative stress resulting in the oxidation of biomolecules along with the disruption of their biological functions can be associated with the development of diseases, such as cancer, diabetes, and neurodegenerative diseases, respectively. This is also the case for advanced glycation end products, which result from chemical reactions of keto compounds such as oxidized sugars with proteins. The role of oxidative modifications under physiological and pathophysiological conditions remains largely unknown. Recently, novel technologies have been established that allow the enrichment, identification, and characterization of specific oxidative PTMs (oxPTMs). This is essential to develop strategies to prevent and treat diseases that are associated with oxidative stress. Therefore this review will focus on (i) the methods and technologies, which are currently applied for the detection, identification, and quantification of oxPTMs including the design of high throughput approaches and (ii) the analyses of oxPTMs related to physiological and pathological conditions.
Publikation
We applied an extended charge‐based fractional diagonal chromatography (ChaFRADIC) workflow to analyze the N‐terminal proteome of Arabidopsis thaliana seedlings. Using iTRAQ protein labeling and a multi‐enzyme digestion approach including trypsin, GluC, and subtilisin, a total of 200 μg per enzyme, and measuring only one third of each ChaFRADIC‐enriched fraction by LC‐MS, we quantified a total of 2791 unique N‐terminal peptides corresponding to 2249 different unique N‐termini from 1270 Arabidopsis proteins. Our data indicate the power, reproducibility, and sensitivity of the applied strategy that might be applicable to quantify proteolytic events from as little as 20 μg of protein per condition across up to eight different samples. Furthermore, our data clearly reflect the methionine excision dogma as well as the N‐end rule degradation pathway (NERP) discriminating into a stabilizing or destabilizing function of N‐terminal amino acid residues. We found bona fide NERP destabilizing residues underrepresented, and the list of neo N‐termini from wild type samples may represent a helpful resource during the evaluation of NERP substrate candidates. All MS data have been deposited in the ProteomeXchange with identifier PXD001855 (http://proteomecentral.proteomexchange.org/dataset/PXD001855).
Publikation
We applied an extended charge‐based fractional diagonal chromatography (ChaFRADIC) workflow to analyze the N‐terminal proteome of Arabidopsis thaliana seedlings. Using iTRAQ protein labeling and a multi‐enzyme digestion approach including trypsin, GluC, and subtilisin, a total of 200 μg per enzyme, and measuring only one third of each ChaFRADIC‐enriched fraction by LC‐MS, we quantified a total of 2791 unique N‐terminal peptides corresponding to 2249 different unique N‐termini from 1270 Arabidopsis proteins. Our data indicate the power, reproducibility, and sensitivity of the applied strategy that might be applicable to quantify proteolytic events from as little as 20 μg of protein per condition across up to eight different samples. Furthermore, our data clearly reflect the methionine excision dogma as well as the N‐end rule degradation pathway (NERP) discriminating into a stabilizing or destabilizing function of N‐terminal amino acid residues. We found bona fide NERP destabilizing residues underrepresented, and the list of neo N‐termini from wild type samples may represent a helpful resource during the evaluation of NERP substrate candidates. All MS data have been deposited in the ProteomeXchange with identifier PXD001855 (http://proteomecentral.proteomexchange.org/dataset/PXD001855).
Publikation
Transgenic Arabidopsis conditionally expressing the bacterial avrRpm1 type III effector under the control of a dexamethasone‐responsive promoter were used for proteomics studies. This model system permits study of an individual effector without interference from additional bacterial components. Coupling of different prefractionation approaches to high resolution 2‐DE facilitated the discovery of low abundance proteins – enabling the identification of proteins that have escaped detection in similar experiments. A total of 34 differentially regulated protein spots were identified. Four of these (a remorin, a protein phosphatase 2C (PP2C), an RNA‐binding protein, and a C2‐domain‐containing protein) are potentially early signaling components in the interaction between AvrRpm1 and the cognate disease resistance gene product, resistance to Pseudomonas syringae pv. maculicola 1 (RPM1). For the remorin and RNA‐binding protein, involvement of PTM and post‐transcriptional regulation are implicated, respectively.
Publikation
Transgenic Arabidopsis conditionally expressing the bacterial avrRpm1 type III effector under the control of a dexamethasone‐responsive promoter were used for proteomics studies. This model system permits study of an individual effector without interference from additional bacterial components. Coupling of different prefractionation approaches to high resolution 2‐DE facilitated the discovery of low abundance proteins – enabling the identification of proteins that have escaped detection in similar experiments. A total of 34 differentially regulated protein spots were identified. Four of these (a remorin, a protein phosphatase 2C (PP2C), an RNA‐binding protein, and a C2‐domain‐containing protein) are potentially early signaling components in the interaction between AvrRpm1 and the cognate disease resistance gene product, resistance to Pseudomonas syringae pv. maculicola 1 (RPM1). For the remorin and RNA‐binding protein, involvement of PTM and post‐transcriptional regulation are implicated, respectively.
Publikation
Transgenic Arabidopsis conditionally expressing the bacterial avrRpm1 type III effector under the control of a dexamethasone‐responsive promoter were used for proteomics studies. This model system permits study of an individual effector without interference from additional bacterial components. Coupling of different prefractionation approaches to high resolution 2‐DE facilitated the discovery of low abundance proteins – enabling the identification of proteins that have escaped detection in similar experiments. A total of 34 differentially regulated protein spots were identified. Four of these (a remorin, a protein phosphatase 2C (PP2C), an RNA‐binding protein, and a C2‐domain‐containing protein) are potentially early signaling components in the interaction between AvrRpm1 and the cognate disease resistance gene product, resistance to Pseudomonas syringae pv. maculicola 1 (RPM1). For the remorin and RNA‐binding protein, involvement of PTM and post‐transcriptional regulation are implicated, respectively.