- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
Jasmonates are well‐characterized signals in the development of plants and their response to abiotic and biotic stresses, such as touch and wounding by herbivores. A gap in our knowledge on jasmonate‐induced processes, however, is the cellular localization of jasmonates.Here, a novel antibody‐based approach was developed to visualize jasmonates in cross‐sections of plant material. Antibodies raised in rabbits against BSA‐coupled jasmonic acid (JA) are specific for JA, its methyl ester and isoleucine conjugate. They do not bind to 12‐oxophytodienoic acid, 12‐hydoxy‐JA or coronatine. These antibodies were used in combination with newly established fixation and embedding methods.Jasmonates were rapidly and uniformly distributed within all cells near the site of damage of a mechanically wounded tomato (Solanum lycopersicum) leaf. Leaf tissue distally located to the wound site exhibited identical distribution, but had a lower signal intensity. The occurrence of jasmonates in all cell types of a wounded leaf was accompanied by transcript accumulation of early JA‐induced genes visualized by in situ hybridization.With these new antibodies, a powerful tool is available to detect cell‐specifically the occurrence of jasmonates in any jasmonate‐dependent stress response or developmental process of plants.
Publikation
Jasmonates are well‐characterized signals in the development of plants and their response to abiotic and biotic stresses, such as touch and wounding by herbivores. A gap in our knowledge on jasmonate‐induced processes, however, is the cellular localization of jasmonates.Here, a novel antibody‐based approach was developed to visualize jasmonates in cross‐sections of plant material. Antibodies raised in rabbits against BSA‐coupled jasmonic acid (JA) are specific for JA, its methyl ester and isoleucine conjugate. They do not bind to 12‐oxophytodienoic acid, 12‐hydoxy‐JA or coronatine. These antibodies were used in combination with newly established fixation and embedding methods.Jasmonates were rapidly and uniformly distributed within all cells near the site of damage of a mechanically wounded tomato (Solanum lycopersicum) leaf. Leaf tissue distally located to the wound site exhibited identical distribution, but had a lower signal intensity. The occurrence of jasmonates in all cell types of a wounded leaf was accompanied by transcript accumulation of early JA‐induced genes visualized by in situ hybridization.With these new antibodies, a powerful tool is available to detect cell‐specifically the occurrence of jasmonates in any jasmonate‐dependent stress response or developmental process of plants.
Publikation
Jasmonates are well‐characterized signals in the development of plants and their response to abiotic and biotic stresses, such as touch and wounding by herbivores. A gap in our knowledge on jasmonate‐induced processes, however, is the cellular localization of jasmonates.Here, a novel antibody‐based approach was developed to visualize jasmonates in cross‐sections of plant material. Antibodies raised in rabbits against BSA‐coupled jasmonic acid (JA) are specific for JA, its methyl ester and isoleucine conjugate. They do not bind to 12‐oxophytodienoic acid, 12‐hydoxy‐JA or coronatine. These antibodies were used in combination with newly established fixation and embedding methods.Jasmonates were rapidly and uniformly distributed within all cells near the site of damage of a mechanically wounded tomato (Solanum lycopersicum) leaf. Leaf tissue distally located to the wound site exhibited identical distribution, but had a lower signal intensity. The occurrence of jasmonates in all cell types of a wounded leaf was accompanied by transcript accumulation of early JA‐induced genes visualized by in situ hybridization.With these new antibodies, a powerful tool is available to detect cell‐specifically the occurrence of jasmonates in any jasmonate‐dependent stress response or developmental process of plants.