- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Publikation
Publikation
Diese Seite wurde zuletzt am 25 Jul 2012 25 Jul 2012 geändert.
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikation
Lipoxygenases (LOXs) and other LOX pathway enzymes are potentially able to form a large set of compounds being of commercial interest. Among them are conjugated dienic acids, jasmonates, and volatile aldehydes. Additionally, fatty acid hydroperoxides, formed by LOX, can serve as precursors for further transformation by either enzymes of the so‐called LOX pathway or by chemical reactions. In the case of linoleic acid more than one hundred products generated from its LOX‐derived fatty acid hydroperoxides have been described. Many of these products exhibit biological activity, suggesting a significant biological function of LOXs. This will be described for two different 13‐LOXs. (I) In various oilseeds we found that specific 13‐LOXs are localized at the lipid body membrane. They are capable of oxygenating esterified polyenoic fatty acids, such as triacylglycerols and phospho‐lipids. In addition, they form with arachidonic acid as substrate preferentially either 8‐ or 11‐hydroperoxy eicosatetraenoic acid, which is a very unusual positional specificity for plant LOXs. (II) From barley leaves we isolated another linoleate 13‐LOX form, which is localized within chloroplasts and is induced by jasmonic acid methyl ester. It is suggested, that this LOX form is capable of oxygenating linolenic acid residues of galactolipids. Examples will be presented for barley leaves of oxygenated derivatives of linolenic acid and compounds resulting from the hydroperoxide lyase‐branch of the LOX pathway.
Publikation
From a cDNA library generated from mRNA of white leaf tissues of the ribosome‐deficient mutant ‘albostrians' of barley (Hordeum vulgare cv. Haisa) a cDNA was isolated carrying 54.2% identity to a recently published cDNA which codes for the diadenosine‐5′,5′′′‐P1,P4‐tetraphosphate (Ap4A) hydrolase of Lupinus angustifolius (Maksel et al. (1998) Biochem. J. 329, 313–319), and 69% identity to four partial peptide sequences of Ap4A hydrolase of tomato. Overexpression in Escherichia coli revealed a protein of about 19 kDa, which exhibited Ap4A hydrolase activity and cross‐reactivity with an antibody raised against a purified tomato Ap4A hydrolase (Feussner et al. (1996) Z. Naturforsch. 51c, 477–486). Expression studies showed an mRNA accumulation in all organs of a barley seedling. Possible functions of Ap4A hydrolase in plants will be discussed.
Publikation
In seedlings of Arabidopsis thaliana the thionin gene Thi2.1 is inducible by methyl jasmonate, wounding, silver nitrate, coronatine, and sorbitol. We have used a biochemical and genetic approach to test the signal transduction of these different inducers. Both exogenously applied jasmonates and jasmonates produced endogenously upon stress induction, lead to GUS expression in a Thi2.1 promoter-uidA transgenic line. No GUS expression was observed in a coi1 mutant background which lacks jasmonate perception whereas methyl jasmonate and coronatine but not the other inducers were able to overcome the block in jasmonic acid production in a fad3-2 fad7-2 fad8 mutant background. Our results show conclusively that all these inducers regulate Thi2-1 gene expression via the octadecanoid pathway.
Publikation
Monoclonal antibodies raised against a phylogenetically conserved peptide from the C‐terminal domain of γ‐tubulin molecule were used for immunofluorescence detection of γ‐tubulin in acentriolar mitotic spindles of plant cells. The antibodies stained kinetochore fibres along their whole length, including the close vicinity of kinetochores. After microtubule disassembly by the antimicrotubular drugs amiprophos‐methyl, oryzalin and colchicine, γ‐tubulin was found on remnants of kinetochore fibres attached to chromosomes. In cells recovering from the amiprophos‐methyl treatment, γ‐tubulin was localized with the re‐growing kinetochore microtubule fibres nucleated or captured by kinetochore/centromeric regions. On isolated chromosomes, γ‐tubulin co‐localized with α‐tubulin in the kinetochore/centromeric region. The data presented suggest that in acentriolar higher plant cells γ‐tubulin might be directly or indirectly involved in modulation and/or stabilization of kinetochore–microtubule interactions.
Diese Seite wurde zuletzt am 25 Jul 2012 25 Jul 2012 geändert.